[1] PATEL K, CHIKKALI S H, SIVARAM S. Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications[J]. Progress in Polymer Science, 2020, 109: 101290.
[2] 薛淑云, 叶伟, 王征, 等. 超高分子量聚乙烯纤维的耐高温性能[J]. 现代纺织技术, 2024, 32(3): 53-60.
XUE Shuyun, YE Wei, WANG Zheng, et al. High-temperature resistance of ultra-high molecular weight polyethylene fibers[J]. Advanced Textile Technology, 2024, 32(3): 53-60.
[3] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9): 4286-4309.
YE Zhuoran, LUO Liang, PAN Haiyan, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites[J]. Acta Materiae Compositae Sinica,2022, 39(9): 4286-4309.
[4] 吕佳滨, 张冬霞, 王军锋, 等.我国超高分子量聚乙烯纤维的发展现状与建议[J]. 高科技纤维与应用, 2024, 49(1): 13-16.
LÜ Jiabin, ZHANG Dongxia, WANG Junfeng, et al. Development status and suggestions of ultra-high molecular weight polyethylene fiber in China[J]. Hi-Tech Fiber and Application, 2024, 49(1): 13-16.
[5] 王德诚. 九州星际打造超高相对分子质量聚乙烯纤维研发生产基地[J]. 合成纤维工业, 2023, 46(5): 40.
WANG Decheng. Kyushu interstellar building the R&D and production base of ultra-high relative molecular weight polyethylene fiber[J]. China Synthetic Fiber Industry, 2023, 46(5): 40.
[6] 苏家凯, 刘双艳, 厉勇, 等. 无卤阻燃改性超高分子量聚乙烯纤维的制备及性能[J]. 工程塑料应用, 2024, 52(3): 39-44.
SU Jiakai, LIU Shuangyan, LI Yong, et al. Preparation and performance of halogen-free flame retardant modified ultra-high molecular weight polyethylene fiber[J]. Engineering Plastics Application, 2024, 52(3): 39-44.
[7] 李美霞, 吕汪洋, 王刚强, 等. 超高分子量聚乙烯纤维表面改性研究进展[J]. 现代纺织技术, 2022, 30(5): 235-245.
LI Meixia, LÜ Wangyang, WANG Gangqiang, et al. Research progress on surface modification of ultra-high molecular weight polyethyene fibers[J]. Advanced Textile Technology, 2022, 30(5): 235-245.
[8] 张杏, 叶伟, 龙啸云, 等. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(8): 143-150.
ZHANG Xing, YE Wei, LONG Xiaoyun, et al. Interfacial bonding properties of ultra-high molecular weight polyethylene fabric/thermoplastic polyurethane composites[J]. Journal of Textile Research, 2023, 44(8): 143-150.
[9] 汪维海, 陈宏, 黄志超, 等. 多酚-氨基硅烷改性超高分子量聚乙烯纤维的制备及其界面性能[J]. 现代纺织技术, 2022, 30(6): 63-72.
WANG Weihai, CHEN Hong, HUANG Zhichao, et al. Preparation and interfacial properties of UHMWPE fibers modified by polyphenol & amino silane[J]. Advanced Textile Technology, 2022,30(6): 63-72.
[10] DA SILVA CHAGAS N P, LOPES DA SILVA FRAGA G, DE FÁTIMA VIEIRA MARQUES M. Fibers of ultra-high molecular weight polyethylene obtained by gel spinning with polyalphaolefin oil [J]. Macromolecular Research, 2020, 28(12): 1082-1090.
[11] 严成, 颜甜甜, 何勇. 超高分子质量聚乙烯纤维及其复合材料的共混改性[J]. 合成纤维, 2022, 51(5): 9-14.
YAN Cheng, YAN Tiantian, HE Yong. Blending modification of ultra high molecular weight polyethylene fiber and its composites[J]. Synthetic Fiber in China, 2022, 51(5): 9-14.
[12] WANG F, LIU L C, XUE P, et al. A Study of the Mechanical behavior and crystal structure of UHMWPE/HDPE blend fibers prepared by melt spinning [J]. Journal of Engineered Fibers and Fabrics, 2018, 13(3): 155892501801300.
[13] ZHU M, REN H, LU Q, et al. An in situ surface modification method of ultra-high molecular weight polyethylene fiber on the basis of dry gel-spinning technique[J]. Polymer Testing, 2021, 93: 106951.
[14] 张秀雨, 于俊荣, 彭宏, 等. 硅烷交联改性对UHMWPE纤维蠕变性能的影响[J]. 东华大学学报(自然科学版), 2015, 41(1): 1-5.
ZHANG Xiuyu, YU Junrong, PENG Hong, et al. Effect of silane crosslinking modification on the creep behavior of UHMWPE fibers[J]. Journal of Donghua University (Natural Science), 2015, 41(1): 1-5, 27.
[15] WEN X, LI Z Y, YANG C G, et al. Electron beam irradiation assisted preparation of UHMWPE fiber with 3D cross-linked structure and outstanding creep resistance[J]. Radiation Physics and Chemistry, 2022, 199: 110370.
[16] MCDANIEL P B, DEITZEL J M, GILLESPIE J W. Structural hierarchy and surface morphology of highly drawn ultra-high molecular weight polyethylene fibers studied by atomic force microscopy and wide angle X-ray diffraction[J]. Polymer, 2015, 69: 148-158.
[17] HU W, SCHMIDT-ROHR K. Characterization of ultradrawn polyethylene fibers by NMR: Crystallinity, domain sizes and a highly mobile second amorphous phase[J]. Polymer, 2000, 41(8): 2979-2987.
[18] LITVINOV V M, KURELEC L. Remarkably high mobility of some chain segments in the amorphous phase of strained HDPE[J]. Polymer, 2014, 55(2): 620-625.
[19] LITVINOV V M, XU J, MELIAN C, et al. Morphology, chain dynamics, and domain sizes in highly drawn gel-spun ultrahigh molecular weight polyethylene fibers at the final stages of drawing by SAXS, WAXS, and 1H Solid-state NMR [J]. Macromolecules, 2011, 44(23): 9254-9266.
[20] OHTA Y, KAJI A, SUGIYAMA H, et al. Structural analysis during creep process of ultrahigh strength polyethylene fiber [J]. Journal of Applied Polymer Science, 2001,81(2): 312-320.
[21] OHTA Y, YASUDA H.The influence of short branches on the α, β and γ-relaxation processes of ultra-high strength polyethylene fibers [J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(13): 2241-2249.
[22] MOONEN J A H M, ROOVERS W A C, MEIER R J, et al. Crystal and molecular deformation in strained high-performance polyethylene fibers studied by wide-angle X-ray scattering and Raman spectroscopy[J]. Journal of Polymer Science: Part B: Polymer Physics, 1992, 30(4): 361-372.
|