现代纺织技术 ›› 2024, Vol. 32 ›› Issue (5): 116-129.
出版日期:
2024-05-10
网络出版日期:
2024-05-20
Published:
2024-05-10
Online:
2024-05-20
摘要: 为了解熔喷非织造材料在制造工艺、结构设计和应用等方面的研究进展,文章介绍了聚乳酸(Polylactic acid,PLA)、聚丙烯(Polypropylene,PP)等常用高聚物原料的特性,分析了以其为原料所制备熔喷非织造材料的性能特点;总结了熔喷非织造材料在空气过滤、液体过滤、医用抗菌、智能电子纺织品等领域的应用现状,提出了未来熔喷非织造材料的发展方向,以期为熔喷非织造材料的研究提供一定参考,拓展熔喷非织造材料应用领域。
中图分类号:
刘 琛, 杨凯璐, 陈明星, 王新亚, 张 威. 熔喷非织造材料制备及其应用研究进展[J]. 现代纺织技术, 2024, 32(5): 116-129.
LIU Chena, YANG Kailua, CHEN Mingxinga, b, WANG Xinyaa, b, ZHANG Weia, b. Research progress in the preparation and application of melt-blown nonwovens[J]. Advanced Textile Technology, 2024, 32(5): 116-129.
[1]张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状 [J]. 纺织学报, 2020, 41(3): 168-174. ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174. [2]DZIERZKOWSKA E, SCISLOWSKA-CZARNECKA A, KUDZIN M, et al. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration [J]. Journal of Functional Biomaterials, 2021, 12(1): 16. [3]姜莹莹, 陈廷. 熔喷双槽形喷嘴内部通道气体流场数值模拟 [J]. 现代纺织技术, 2023, 31(2): 72-79. JIANG Yingying, CHEN Ting. Numerical simulation of air flow field in the inner passage of melt blowing dual slot die[J]. Advanced Textile Technology, 2023, 31(2): 72-79. [4]WANG W, FENG L, SONG B, et al. Fabrication and application of superhydrophobic nonwovens: a review [J]. Materials Today Chemistry, 2022, 26: 101227. [5]KARA Y, MOLNAR K. Revealing of process-structure-property relationships of fine polypropylene fiber mats generated via melt blowing [J]. Polymers for Advanced Technologies, 2021, 32(6): 2416-2432. [6]KARA Y, MOLNáR K. A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications [J]. Journal of Industrial Textiles, 2022, 51(S1): 137S-180S. [7]CHEN T, WANG X, HUANG X. Effects of processing parameters on the fiber diameter of melt blown nonwoven fabrics [J]. Textile Research Journal, 2005, 75(1): 76-80. [8]ROBERTS E, GHOSH S, POURDEYHIMI B. Process-structure-property relationship of roping in meltblown nonwovens [J]. The Journal of the Textile Institute, 2023, 114(2): 289-302. [9]DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review [J]. Physics of Fluids, 2019, 31(9): 116336. [10]CHANG L, XING X L, ZHOU Y F, et al. Effects of EVA content on properties of PP/EVA blends and melt-blown nonwovens [J]. Fibers and Polymers, 2022, 23(4): 882-890. [11]KARA Y, MOLNAR K. Development of single-polypropylene composites interleaved with MWCNT-doped melt-blown fine fiber mats [J]. Polymer Composites, 2022, 43(8): 5208-5221. [12]贾仕奎, 杜兴, 张明辉, 等. 生物可降解膜的改性制备及其应用进展 [J]. 化工新型材料, 2022, 50(3): 18-22. JIA Shikui, DU Xing, ZHANG Minghui. et al. Recent progress on preparation, modification and application of biodegradable membrane [J]. New Chemicalmaterials, 2022, 50(3): 18-22. [13]殷浩飞, 朱宏伟, 乔国华, 等. 过滤和包装用生物可降解非织造材料应用进展 [J]. 棉纺织技术, 2022, 50(S1): 32-37. YIN Haofei, ZHU Hongwei, QIAO Guohua, et al. Application progress of biodegradable nonwoven material for filtration and packaging[J]. Cotton Textile Technology, 2022, 50(S1): 32-37. [14]孙焕惟, 张恒, 甄琪, 等. 聚乳酸熔喷法非织造材料的应用及改性研究进展 [J]. 高分子材料科学与工程, 2022, 38(5): 146-153. SUN Huanwei, ZHANG Heng, ZHEN Qi, et al. Progress in research of phosphate ester bond based intelligent response system for biomedical fields [J]. Polymer Materials Science and Engineering, 2022, 38(5): 146-153. [15]张宇静, 陈连节, 张思东, 等. 高熔融指数聚乳酸母粒的制备及其熔喷材料的可纺性 [J]. 纺织学报, 2023, 44(2): 55-62. ZHANG Yujing, CHEN Lianjie, ZHANG Sidong, et al. Preparation of high melt index polylactic acid masterbatch and spinnability of its meltblown materials [J]. Journal of Textile Research, 2023, 44(2): 55-62. [16]崔小港, 丰江丽, 刘鹏, 等. SiO2-Ag气凝胶/PLA复合熔喷非织造材料的制备及其空气过滤性能 [J]. 现代纺织技术, 2023, 31(5): 49-57. CUI Xiaogang, FENG Jiangli, LIU Peng, et al. Preparation of SiO2-Ag aerogel PLA composite melt-blown nonwoven materials and the air filtration performance thereof[J]. Advanced Textile Technology, 2023, 31(5): 49-57. [17]席立锋, 周衡书, 周忠成, 等. 丙烯基弹性体增韧聚乳酸熔喷成型及性能 [J]. 工程塑料应用, 2022, 50(3): 32-37. XI Lifeng, ZHOU Hengshu, ZHOU Zhongcheng, et al. Preparation and properties of PBE/PLA melt-blown nonwovens[J]. Engineering Plastics Application, 2022, 50(3): 32-37. [18]刘鹏, 于斌, 孙辉, 等. 熔喷用麦饭石/聚乳酸共混材料的制备及其性能 [J]. 现代纺织技术, 2023, 31(3): 128-136. LIU Peng, YU Bin, SUN Hui, et al. Preparation and properties of medical stone/polylactic acidblends for the fabrication of melt-blown nonwoven [J]. Advanced Textile Technology, 2023, 31(3): 128-136. [19]ZHU F C, YU B, SU J J, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwovens [J]. Autex Research Journal, 2020, 20(1): 24-31. [20]YU B, SUN H, CAO Y, et al. Effects of poly(ε-caprolactone) on structure and properties of poly(lactic acid)/poly(ε-caprolactone) meltblown nonwoven [J]. Polymer-Plastics Technology and Engineering, 2014, 53(17): 1788-1793. [21]孙焕惟, 张恒, 崔景强, 等. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能 [J]. 纺织学报, 2022, 43(6): 86-93. SUN Huanwei, ZHANG Heng, CUI Jingqiang, et al. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process[J]. Journal of Textile Research, 2022, 43(6): 86-93. [22]朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望 [J]. 纺织学报, 2022, 43(1): 49-57. ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1): 49-57. [23]秦子轩, 张恒, 甄琪, 等. 贴肤用熔喷非织造材料柔韧化改性及应用研究进展 [J]. 丝绸, 2023, 60(3): 73-81. QIN Zixuan, ZHANG Heng, ZHEN Qi, et al. Research progress of flexible modification and applications of skin-fitting melt-blown nonwovens [J]. Journal of Silk, 2023, 60(3): 73-81. [24]闫新, 宋会芬, 石素宇, 等. 热塑性聚氨酯熔喷非织造布的制备及表征 [J]. 现代纺织技术, 2019, 27(1): 6-10. YAN Xin, SONG Huifen, SHI Suyu, et al. Preparation and characterization of thermoplastic polyurethane meltblows [J]. Advanced Textile Technology, 2019, 27(1): 6-10. [25]刘亚, 程可为, 赵义侠, 等. 热塑性聚氨酯熔喷非织造材料制备与性能 [J]. 纺织学报, 2022, 43(11): 88-93. LIU Ya, CHENG Kewei, ZHAO Yixia, et al. Preparation and properties of thermoplastic polyurethane meltblowns[J]. Journal of Textile Research, 2022, 43(11): 88-93. [26]SAFRANSKI D L, BOOTHBY J M, KELLY C N, et al. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62: 545-555. [27]PENG M N, JIA H Y, JIANG L, et al. Study on structure and property of PP/TPU melt-blown nonwovens [J]. The Journal of the Textile Institute, 2019, 110(3): 468-475. [28]RAHMAN M, 朱斐超, 杨潇东, 等. 热塑性聚氨酯增韧聚乳酸及其熔喷非织造材料研究[J]. 丝绸, 2021, 58(10): 28-35. RAHMAN M, ZHU Feichao, YANG Xiaodong, et al. Study on toughened polylactic acid and its meltblown nonwovens by thermoplastic polyurethane[J]. Journal of Silk, 2021, 58(10): 28-35. [29]RAHATE A S, NEMADE K R, WAGHULEY S A. Polyphenylene sulfide (PPS): State of the art and applications [J]. Reviews in Chemical Engineering, 2013, 29(6): 471-489. [30]LIU Y, WANG J, CHEN L, et al. Simple preparation of ZIF-8 modified polyphenylene sulfide melt-blown film material and its organic dye removal performance [J]. Journal of Polymer Research, 2022, 29(7): 253. [31]WANG W, HOU Z, ZHANG H, et al. Harsh environmental-tolerant ZIF-8@polyphenylene sulfide membrane for efficient oil/water separation and air filtration under extreme conditions[J]. Journal of Membrane Science, 2023, 685: 121885. [32]LIU W, YU L, CUI X, et al. Polyphenylene sulfide ultrafine viscous fibrous membrane modified by ZIF-8 for highly effective oil/water separation under high salt or alkaline conditions [J]. Membranes, 2022, 12(10): 1017. [33]ZHAO L, GE Q, SUN J, et al. Fabrication and characterization of polyphenylene sulfide composites with ultra-high content of carbon fiber fabrics [J]. Advanced Composites and Hybrid Materials, 2019, 2(3): 481-491. [34]ZHAO L, YU Y, HUANG H, et al. High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics [J]. Composites Part B: Engineering, 2019, 174: 106790. [35]WANG Z F, MACOSKO C W, BATES F S. Tuning surface properties of poly(butylene terephthalate) melt blown fibers by alkaline hydrolysis and fluorination [J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11640-11648. [36]WANG Z F, MACOSKO C W, BATES F S. Fluorine-enriched melt-blown fibers from polymer blends of poly(butylene terephthalate) and a fluorinated multiblock copolyester [J]. ACS Applied Materials & Interfaces, 2016, 8(1): 754-761. [37]杨潇东, 于斌, 孙辉, 等. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能 [J]. 纺织学报, 2023, 44(2): 19-26. YANG Xiaodong, YU Bin, SUN Hui, et al. Preparation and filtration properties of polyethylene trifluoroethylene melt-blown nonwovens[J]. Journal of Textile Research, 2023, 44(2): 19-26. [38]BROCHOCKA A, NOWAK A, MAJCHRZYCKA K, et al. Multifunctional polymer composites produced by melt-blown technique to use in filtering respiratory protective devices [J]. Materials, 2020, 13(3): 712. [39]林铭港,李覃,卢浩,等.防护用聚乳酸非织造材料的研究进展[J].棉纺织技术,2023,51(6):23-28. LIN Minggang, LI Tan, LU Hao, et al. Research progress of PLA nonwovens for protection application[J]. Cotton Textile Technology, 2023,51(6):23-28. [40]SALES E, MULATIER N, WITTMANN L, et al. Effect of dry heat treatment between room temperature and 160 °C on surgical masks[J]. Materials Letters, 2022, 308: 131270. [41]杨吉震, 刘强飞, 何瑞东, 等. 高效低阻空气过滤材料研究进展 [J]. 纺织学报, 2022, 43(10): 209-215. YANG Jizhen, LIU Qiangfei, HE Ruidong, et al. Research progress in high efficiency and low resistance air filter materials[J]. Journal of Textile Research, 2022, 43(10): 209-215. [42]WANG H, WU Y, WANG J. Triboelectric charging of melt-blown nonwoven filters with high filtration efficiency [J]. Scientific Reports, 2022, 12: 1146. [43]ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309. [44]谷英姝, 朱燕龙, 汪滨, 等. 聚乳酸/驻极体熔喷非织造材料的制备及其性能 [J]. 纺织学报, 2023, 44(8): 41-49. GU Yingshu, ZHU Yanlong, WANG Bin, et al. Preparation and properties of polylactic acid/electret melt-blown nonwovens [J]. Journal of Textile Research, 2023, 44(8): 41-49. [45]吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析 [J]. 纺织学报, 2022, 43(12): 29-34. WU Yanjin, WANG Jiang, WANG Hong, Preparation and charging characteristics analysis of hydro charging polypropylene melt-blown nonwovens [J]. Journal of Textile Research, 2022, 43(12): 29-34. [46]陈苗苗, 曾泳春, 卢晨, 等. 水驻极熔喷非织造材料的制备与性能研究 [J]. 高分子通报, 2022(2): 48-55. CHEN Miaomiao, ZENG Yongchun, LU Chen, et al. Exploration of hydro-charging mechanism of melt blown nonwoven materials[J]. Polymer Bulletin, 2022(2): 48-55. [47]GAO H, LIU G H, GUAN J, et al. Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal [J]. Chemical Engineering Journal, 2023, 458: 141412. [48]谭林立, 秦柳, 李英儒, 等. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能 [J]. 纺织学报, 2023, 44(1): 87-92. TAN Linli, QIN Liu, LI Yingru, et al. Preparation and performance of high efficiency and low resistancepolypropylene melt-blown fiber based on supercritical carbon dioxide [J]. Journal of Textile Research, 2023, 44(1): 87-92. [49]ZHANG H, ZHEN Q, LIU Y, et al. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks [J]. Results in Physics, 2019, 12: 1421-1428. [50]DENG N, HE H, YAN J, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration [J]. Polymer, 2019, 165: 174-179. [51]郝天煦, 张威, 王新亚, 等. ZIFs改性聚丙烯熔喷空气过滤材料的制备及其性能研究 [J]. 高分子学报, 2023, 54(4): 509-519. HAO Tianxu, ZHANG Wei, WANG Xinya, et al. Preparation and properties of zeolitic imidazolate framework modified polypropylene melt-blown air filter materials[J]. Acta Polymerica Sinica, 2023, 54(4): 509-519. [52]GE J, ZHAO H Y, ZHU H W, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives [J]. Adv Mater, 2016, 28(47): 10459-10490. [53]ZHU Y, WANG D, JIANG L, et al. Recent progress in developing advanced membranes for emulsified oil/water separation [J]. NPG Asia Materials, 2014, 6(5): e101. [54]余钰骢, 史晓龙, 刘琳, 等. 用于油水分离的超润湿性纺织品研究进展 [J]. 纺织学报, 2020, 41(11): 189-196. YU Yucong, SHI Xiaolong, LIU Lin, et al. Recent progress in super wettable textiles for oil-water separation[J]. Journal of Textile Research, 2020, 41(11): 189-196. [55]党钊, 刘利彬, 向宇, 等. 超疏水-超亲油材料在油水分离中的研究进展 [J]. 化工进展, 2016, 35(S1): 216-222. DANG Zhao, LIU Libin, XIANG Yu, et al. Progress of superhydrophobic-superoleophilic materials for oil/water separation [J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 216-222. [56]赵家明, 孙辉, 于斌, 等. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能 [J]. 纺织学报, 2022, 43(2): 89-97. ZHAO Jiaming, SUN Hui, YU Bin, et al. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties[J]. Journal of Textile Research, 2022, 43(2): 89-97. [57]LI H, ZHANG H, HU J J, et al. Facile preparation of hydrophobic PLA/PBE micro-nanofiber fabrics via the melt-blown process for high-efficacy oil/water separation [J]. Polymers, 2022, 14(9): 1667. [58]刘延波, 陈倩, 杨波, 等. 超疏水亲油PDMS@mSiO2-PP非织造布的制备及其油水分离性能 [J]. 天津工业大学学报, 2022, 41(6): 29-35. LIU Yanbo, CHEN Qian, YANG Bo, et al. Preparation of superhydrophobic and lipophilic PDMS@mSiO2-PP nonwoven fabric and its oil-water separation performance[J]. Journal of Tiangong University, 2022, 41(6): 29-35. [59]SUN F, LI T T, REN H T, et al. PP/TiO2 melt-blown membranes for oil/water separation and photocatalysis: manufacturing techniques and property evaluations [J]. Polymers, 2019, 11(5): 775-788. [60]ZHANG J, WANG L, ZHANG C, et al. MnOx-mineralized oxidized-polypropylene membranes for highly efficient oil/water separation [J]. Separation and Purification Technology, 2021, 276: 119343. [61]SUN F, LI T T, ZHANG X Y, et al. In situ growth polydopamine decorated polypropylen melt-blown membrane for highly efficient oil/water separation [J]. Chemosphere, 2020, 254: 126873. [62]QI B H, HU X, CUI S W, et al. Rapid fabrication of superhydrophobic magnetic melt-blown fiber felt for oil spill recovery and efficient oil-water separation [J]. Separation and Purification Technology, 2023, 306: 122486. [63]张国华, 秦爱文, 李蓓, 等. 基于两性离子聚合物制备Janus膜及其性能研究 [J]. 塑料科技, 2022, 50(11): 61-65. ZHANG Guohua, QIN Aiwen, LI Bei, et al. Preparation and properties of Janus membranes based on zwitterionic polymers[J]. Plastics Science and Technology, 2022, 50(11): 61-65. [64]ZHANG H, ZHEN Q, YAN Y J, et al. Polypropylene/polyester composite micro/nano-fabrics with linear valley-like surface structure for high oil absorption [J]. Materials Letters, 2020, 261: 127009. [65]FENG Y, WANG N, HE T, et al. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: A possible antibacterial layer for personal protective face masks [J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59196-59205. [66]KUMAR A, SHARMA A, CHEN Y, et al. Copper@ZIF-8 core-shell nanowires for reusable antimicrobial face masks [J]. Advanced Functional Materials, 2021, 31(10): 2008054. [67]李露露, 俞科静, 钱坤, 等. 聚多巴胺诱导纳米银改性聚丙烯熔喷非织造布的制备及其抗菌性能研究 [J]. 丝绸, 2022, 59(5): 20-27. LI Lulu, YU Kejing, QIAN Kun, et al. Preparation of polydopamine-induced nanosilver-modified polypropylene meltblown nonwoven fabric and study on its antibacterial properties[J]. Journal of Silk, 2022, 59(5): 20-27. [68]陈卓, 戴钧明, 潘晓娣, 等. 抗菌聚丙烯熔喷材料的反应挤出法制备及其性能 [J]. 纺织学报, 2023, 44(6): 57-65. CHEN Zhuo, DAI Junming, PAN Xiaodi, et al. Fabrication and properties of antibacterial polypropylene melt-blown nonwoven fabrics by reactive extrusion [J]. Journal of Textile Research, 2023, 44(6): 57-65. [69]ŁATWIŃSKA M, SOJKA-LEDAKOWICZ J, CHRUSCIEL J, et al. PLA and PP composite nonwoven with antimicrobial activity for filtration applications [J]. International Journal of Polymer Science, 2016, 2016: 1-9. [70]MA Y, WISUTHIPHAET N, BOLT H, et al. N-halamine polypropylene nonwoven fabrics with rechargeable antibacterial and antiviral functions for medical applications [J]. ACS Biomaterials Science & Engineering, 2021, 7(6): 2329-2336. [71]LI T T, ZHANG H, GAO B, et al. Daylight-driven photosensitive antibacterial melt-blown membranes for medical use [J]. Journal of Cleaner Production, 2021, 296: 126395. [72]ZHANG H, ZHEN Q, GUAN X Y, et al. Fluffy polypropylene-polyethylene glycol fabrics with branched micro- and nanofibrous structures for rapid liquid transport [J]. Polymer Testing, 2020, 83: 106310. [73]WANG R, ZHANG H, CAO Y, et al. Preparation of PLA/PEG@SDS microfibers-based nonwovens via melt-blown process parameters: Wound dressings with enhanced water wetting performance [J]. Journal of Applied Polymer Science, 2023, 140(31): 54234. [74]Gazzola W H, BENSON R S, CARVER W. Meltblown polylactic acid nanowebs as a tissue engineering scaffold [J]. Annals of Plastic Surgery, 2019, 83(6): 716-721. [75]SHIRWAIKER R A, FISHER M B, ANDERSON B, et al. High-throughput manufacture of 3D fiber scaffolds for regenerative medicine [J]. Tissue Engineering Part C: Methods, 2020, 26(7): 364-374. [76]JENKINS T L, MEEHAN S, POURDEYHIMI B, et al. Meltblown polymer fabrics as candidate scaffolds for rotator cuff tendon tissue engineering [J]. Tissue Engineering Part A, 2017, 23(17-18): 958-967. [77]GAO L, WANG M, WANG W, et al. Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range [J]. Nano-Micro Letters, 2021, 13(1): 140. [78]WANG F, JIANG J, SUN F, et al. Flexible wearable graphene/alginate composite non-woven fabric temperature sensor with high sensitivity and anti-interference [J]. Cellulose, 2020, 27(4): 2369-2380. [79]WANG N, SUN H, YANG X, et al. Flexible temperature sensor based on RGO/CNTs@PBT melting blown nonwoven fabric [J]. Sensors and Actuators A: Physical, 2022, 339: 113519. [80]HASAN M M, ZHU F, AHMED A, et al. Functionalization of polypropylene nonwoven fabrics using cold plasma (O2) for developing graphene-based wearable sensors [J]. Sensors and Actuators A: Physical, 2019, 300: 111637. [81]LU Y, SUN H, CHENG J Y, et al. High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics [J]. Sensors and Actuators A:Physical, 2020, 315: 112174. [82]DINH T, NGUYEN T, PHAN H P, et al. Stretchable respiration sensors: advanced designs and multifunctional platforms for wearable physiological monitoring [J]. Biosensors & Bioelectronics, 2020, 166: 112460. [83]GAO L, LIU Y M, WANG Z J, et al. High-mechanical-resolution pressure sensor based on melt-blown fibers in integrated wearable mask for respiratory monitoring [J]. IEEE Transactions on Electron Devices, 2021, 68(11): 5765-5772. [84]ZHANG J F, CHEN G J, ZHANG K J, et al. Washable and breathable electret sensors based on a hydro-charging technique for smart textiles [J]. ACS Applied Materials & Interfaces, 2023, 15(1): 2449-2458. [85] XIAO W, GONG Y, WANG H, et al. Preparation and electrochemical performance of ZrO2 nanoparticle-embedded nonwoven composite separator for lithium-ion batteries [J]. Ceramics International, 2015, 41(10): 14223-14229. [86]WU D, HE J, ZHANG M, et al. Fabrication of a novel sandwich-like composite separator with enhanced physical and electrochemical performances for lithium-ion battery [J]. Journal of Power Sources, 2015, 290: 53-60. [87]LI W, XING Y, WU Y, et al. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane [J]. Electrochimica Acta, 2015, 151: 289-296. [88]WANG E, CHIU C-H, CHOU P-H. Safety assessment of polyolefin and nonwoven separators used in lithium-ion batteries [J]. Journal of Power Sources, 2020, 461: 228148. [89]ZHANG C, TIAN W, LI D, et al. The high performances of SiO2-coated melt-blown non-woven fabric for lithium-ion battery separator [J]. The Journal of The Textile Institute, 2018, 109(9): 1254-1261. [90]WANG H, ZHANG Y, GAO H P, et al. Composite melt-blown nonwoven fabrics with large pore size as Li-ion battery separator [J]. International Journal of Hydrogen Energy, 2016, 41(1): 324-330. [91]LUISO S, HENRY J J, POURDEYHIMI B, et al. Meltblown polyvinylidene difluoride as a Li-ion battery separator [J]. ACS Applied Polymer Materials, 2021, 3(6): 3038-3048. [92]潘蕾蕾, 范硕, 王宇轩, 等. 吸声隔音功能纺织材料的研究现状及进展 [J]. 现代纺织技术, 2023, 31(6): 216-225. FAN Leilei, FAN Shuo, WANG Yuxuan, et al. Research status and progress of textile materials with sound-absorbing and sound insulation functions [J]. Advanced Textile Technology, 2023, 31(6): 216-225. [93]SIVRI C, HAJI A. Surface coating of needle-punched nonwovens with meltblown nonwovens to improve acoustic properties [J]. Coatings, 2022, 12(8): 1092. [94]BHAT G, MESSIRY M E. Effect of microfiber layers on acoustical absorptive properties of nonwoven fabrics [J]. Journal of Industrial Textiles, 2020, 50(3): 312-332. [95]ZHANG L, WU J, YANG X, et al. Melt-blowing of silicane-modified phenolic fibrous mat for personal thermal protection [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 131076. [96]DU Q P, YANG X B, LI Y Z, et al. Hierarchical PBO nanofiber/PPS melt-blown mats with a controllable porous microstructure for thermal protection under harsh conditions [J]. ACS Applied Polymer Materials, 2023,5(5): 3499-3506. [97]范虹霞, 冯新星, 金万慧, 等. ZrO2/SiO2改性隔热纤维素微纤维气凝胶复合织物的制备及其性能 [J]. 现代纺织技术, 2023, 31(1): 185-193. FAN Hongxia, FENG Xinxing, JIN Wanhui, et al. Preparation and properties of ZrO2/SiO2 modified thermal insulation cellulose microfiber aerogel composite fabrics [J]. Advanced Textile Technology, 2023, 31(1): 185-193. [98]顾闻彦, 陆韵颖. 熔喷/针刺多层非织造材料结构设计对服用保暖性能的影响 [J]. 南通大学学报(自然科学版), 2020, 19(4): 63-68. GU Wenyan, LU Yunying. Effect of structure design of needle punched/melt blown multilayer nonwovens on thermal performance of clothing [J]. Journal of Nantong University (Natural Science Edition), 2020, 19(4): 63-68. [99]CABELLO-ALVARADO C, ANDRADE-GUEL M, MEDELLIN-BANDA D I, et al. Non-woven fabrics based on Nylon 6/carbon black-graphene nanoplatelets obtained by melt-blowing for adsorption of urea, uric acid and creatinine [J]. Materials Letters, 2022, 320: 132382. [100] CáRDENAS SáNCHEZ J A, SZEWCZYK H, ASSAAD J, et al. Use of meltblown nonwoven fabric filter for stormwater runoff treatment [J]. Water, 2023, 15(2): 242. |
[1] | 苏祺, 高燕, 高晓平, 杨博琛. 过硫酸铵浓度对PAN/PANI纳米纤维膜电磁屏蔽性能的影响[J]. 现代纺织技术, 2024, 32(5): 1-8. |
[2] | 李金超, 梅硕, 杜雨佳, 马骉, 李虹. 空气过滤用聚氨酯纳米纤维膜的制备及其性能[J]. 现代纺织技术, 2024, 32(5): 18-22. |
[3] | 龚向宇, 王 群, 赵文潇, 王际平. 基于金属有机框架的功能纺织品研究进展[J]. 现代纺织技术, 2024, 32(2): 40-49. |
[4] | 王琦, 陈明星, 张威, 吴艳杰, 王新亚. 静电纺Janus纳米纤维膜的研究进展[J]. 现代纺织技术, 2024, 32(10): 1-10. |
[5] | 崔小港, 丰江丽, 刘 鹏, 杨潇东, 朱斐超, 于 斌, 孙 辉. SiO2-Ag气凝胶/PLA复合熔喷非织造材料的制备及其空气过滤性能[J]. 现代纺织技术, 2023, 31(5): 49-57. |
[6] | 陈西锋, 陈晔. 传统SK型与新型静态混合器的结构优化[J]. 现代纺织技术, 2023, 31(3): 1-11. |
[7] | 翟雯, 韩世娇, 范伟思, 芦路路, 李源, 蒋秋冉. 超低压降静电辅助PET PVDF织造结构滤材的制备及其空气过滤性能[J]. 现代纺织技术, 2023, 31(2): 112-. |
[8] | 方瑜, 李楠, 吕汪洋. 基于纳米铜-氧化锌的聚丙烯腈抗菌纤维制备及其性能[J]. 现代纺织技术, 2022, 30(6): 52-62. |
[9] | 邱心妮, 郭韫淇, 张楠涛, 王欣, 石嘉威, 区嘉雨, 李泳, 余传明. 气相沉积法构筑的超疏水化妆棉及其油水分离性能[J]. 现代纺织技术, 2022, 30(6): 157-165. |
[10] | 支海萍, 张顺花, 许卓. 黏土矿物材料改性聚丙烯的剪切流变性能及其可纺性[J]. 现代纺织技术, 2022, 30(5): 82-88. |
[11] | 王之奇, 王晟, 潘莲君, 王騊. PET织物负载ZIF-67包裹钴基纳米针阵列的制备及其空气过滤性能[J]. 现代纺织技术, 2022, 30(3): 73-80. |
[12] | 贾子奇, 王琛, 赵甜甜, 刘扬. 氮掺杂氧化石墨烯-TiO2/ PAN复合纳米纤维膜的制备及其光催化性能[J]. 现代纺织技术, 2022, 30(3): 97-107. |
[13] | 田银彩,林秋虎. 静电纺聚丙烯腈/MgO复合膜的制备及阻燃性能研究[J]. 现代纺织技术, 2021, 29(6): 39-42. |
[14] | 殷妮,刘福娟. 空气过滤用纳米纤维膜研究进展[J]. 现代纺织技术, 2021, 29(5): 26-36. |
[15] | 高辉,张文静,黄思思,周雨,江文斌. 腈纶织物丝胶改性整理及其性能[J]. 现代纺织技术, 2021, 29(5): 95-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||