[1] 田义宗. 电磁辐射污染对环境和人体健康的影响建模研究[J]. 环境科学与管理, 2021, 46(11): 137-140.
TIAN Yizong. Modeling study of the effects of electromagnetic radiation pollution on the environment and human health[J]. Environmental Science and Management, 2021, 46(11): 137-140.
[2] 杨艳凤, 刘元军, 赵晓明. 掺杂剂掺杂聚吡咯复合吸波材料的研究进展[J]. 现代纺织技术, 2021, 29(3): 8-15.
YANG Yanfeng, LIU Yuanjun, ZHAO Xiaoming. Research progress of dopant-doped polypyrrole composite absorbing materials[J]. Advanced Textile Technology, 2021, 29(3): 8-15.
[3] 季惠, 张恒宇, 王妮, 等. 二维碳化物Ti3C2Tx/磁性材料复合吸波材料研究进展[J]. 丝绸, 2021, 58(8): 33-39.
JI Hui, ZHANG Hengyu, WANG Ni, et al. Research progress of two-dimensional carbide Ti3C2Tx/magnetic composite wave absorbing materials[J]. Journal of Silk, 2021, 58(8): 33-39.
[4] HUANG J, GU H L, LI N, et al. Polypyrrole/Schiff base composite as electromagnetic absorbing material with high and tunable absorption performance[J]. Molecules, 2022, 27(19): 6160-6168.
[5] 金东君. 微波与太赫兹波段宽带超材料吸波器研究[D]. 长春: 吉林大学, 2023: 1-11.
JIN Dongjun. Research on Wideband Metamaterial Absorbers in Microwave and Terahertz Frequency Bands [D]. Changchun: Jilin University, 2023: 1-11.
[6] 师甜甜, 杜立飞, 张海锋, 等. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 54-60.
SHI Tiantian, DU Lifei, ZHANG Haifeng, et al. Research progress of water-based wave absorbing metamaterials[J]. Materials Reports, 2023, 37(18): 54-60.
[7] 孟真, 李广德, 崔光振, 等. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 5-12.
MENG Zhen, LI Guangde, CUI Guangzhen, et al. Research progress on infrared/radar compatible stealth materials based on metamaterials[J]. Materials Reports, 2023, 37(21): 5-12.
[8] HUANG Q Q, WANG G H, ZHOU M, et al. Metamaterial electromagnetic wave absorbers and devices: design and 3D microarchitecture[J]. Journal of Materials Science & Technology, 2022, 108: 90-101.
[9] CUI Y X, HE Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.
[10] 田宇泽, 金晶, 杨河林, 等. 微波电磁超材料设计与应用研究进展[J]. 中国科学: 物理学 力学 天文学, 2023, 53(9): 197-207.
TIAN Yuze, JIN Jing, YANG Helin, et al. Advances in the design and application of microwave electromagnetic metamaterials[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53(9): 197-207.
[11] WANG D D, JIN J, GUO Y, et al. Lightweight waterproof magnetic carbon foam for multifunctional electromagnetic wave absorbing material[J]. Carbon, 2023, 202(P1): 464-474.
[12] KIM T, MAHDI I, CHOI H, et al. Solar-light-assisted lithium-ion storage using solar-light absorbing material[J]. Energy Technology, 2022, 10(12): 1-8.
[13] 王彦朝, 许河秀, 王朝辉, 等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 39-51.
WANG Yanchao, XU Hexiu, WANG Zhaohui, et al. Research progress of electromagnetic metamaterial wave absorbers[J]. Acta Physica Sinica, 2020, 69(13): 39-51.
[14] GAO B, YUEN M M F, YE T T. Flexible frequency selective metamaterials for microwave applications[J]. Scientific Reports, 2017, 7(1): 1-7.
[15] 杜宏艳, 张子栋, 田瑞, 等. 基于人工电磁介质的宽带吸波器研究进展[J]. 材料工程, 2020, 48(6): 23-33.
DU Hongyan, ZHANG Zidong, TIAN Rui, et al. Research progress on broadband absorbers based on artificial electromagnetic media[J]. Journal of Materials Engineering, 2020, 48(6): 23-33.
[16] 王洋, 赵宏刚, 杨海滨, 等. 基于变密度法的水声隔声超材料拓扑逆向设计[J]. 中国科学: 技术科学, 2023, 53(8): 1360-1371.
WANG Yang, ZHAO Honggang, YANG Haibin, et al. Topological reverse design of metamaterials for acoustic insulation based on variable density method[J]. Scientia Sinica(Technologica), 2023, 53(8): 1360-1371.
[17] JIA Z X, ZHANG M F, LIU B, et al. Graphene foams for electromagnetic interference shielding: A review[J]. Acs Applied Nano Materials, 2020, 3(7): 6140-6155.
[18] ZHAO X M, LIU Y J, LIANG T L, et al. Influence of the needle depth and frequency on the thermal insulation performance of pre-oxidised fibre felts[J]. Fibres & Textiles in Eastern Europe, 2020, 28(4): 57-66.
[19] YAHIAOUI R, TAN S Y, CONG L Q, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. Journal of Applied Physics, 2015, 118(8): 083103.
[20] SHAN Y, CHEN L, SHI C, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350: 63-70.
[21] WANG X, ZHANG B Z, WANG W J, et al. Design, fabrication, and characterization of a flexible dual-band metamaterial absorber[J]. IEEE Photonics Journal, 2017, 9(4): 1-12.
[22] 陈哲耕. 太赫兹超材料的设计与性能控制研究[D]. 成都: 电子科技大学, 2018: 19-44.
CHEN Zhegeng. Design and Performance Control of Terahertz Metamaterials[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 19-44.
[23] JU Z D, XU G Q, WEI Z H, et al. .An ultra-broadband terahertz metamaterial absorber based on split rings array and island-shape structures[J]. Modern Physics Letters B, 2018, 32(17): 1-12.
[24] 杨鹏, 秦晋, 徐进, 等. 超薄柔性透射型超构材料吸收器[J]. 物理学报, 2019, 68(8): 1-7.
YANG Peng, QIN Jin, XU Jin, et al. Ultrathin flexible transmission metamaterial absorber[J]. Acta Physica Sinica, 2019, 68(8): 1-7.
[25] MOHANTY A, ACHARYA O P, APPASANI B, et al. A broadband polarization insensitive metamaterial absorber using petal-shaped structure[J]. Plasmonics, 2020, 15(6): 2147-2152.
[26] KIM I H, KIM D, YIN M Y, et al. Characteristics of graphene embedded indium tin oxide (ITO-graphene-ITO) transparent conductive films[J]. Molecular Crystals and Liquid Crystals, 2018, 676(1): 95-104.
[27] 阮心怡, 杨家骅, 邱夷平, 等. 含超材料吸波体的夹芯复合材料设计、制备及性能[J]. 航空材料学报, 2022, 42(3): 45-54.
RUAN Xinyi, YANG Jiahua, QIU Yiping, et al. Design, preparation and properties of sandwich composite with metamaterial Absorber[J]. Journal of Aeronautical Materials, 2022, 42(3): 45-54.
[28] 吴杨慧, 王俊杰, 赖森锋, 等. 用于航空电磁防护和智能隐身的光学透明柔性宽带吸波器的试验研究[J]. 航空科学技术, 2019, 30(5): 70-74.
WU Yanghui, WANG Junjie, LAI Senfeng, et al. Experimental study on optically transparent flexible wideband absorber for airborne electromagnetic protection and intelligent stealth[J]. Aeronautical Science & Technology, 2019, 30(5): 70-74.
[29] 王连胜, 夏冬艳, 丁学用, 等. 适用于77 GHz车载毫米波雷达电磁屏蔽的超材料吸波体设计[J]. 海南师范大学学报(自然科学版), 2021, 34(4): 401-405.
WANG Liansheng, XIA Dongyan, DING Xueyong, et al. Design of metamaterial absorber for electromagnetic shielding of 77 GHz vehicle-mounted millimeter wave radar[J]. Journal of Hainan Normal University(Natural Science), 2021, 34(4): 401-405.
[30] 王蒙军, 户天宇, 雷晓勇, 等. 可共形透明宽带超材料吸波体设计与分析[J]. 电子元件与材料, 2022, 41(7): 699-706.
WANG Mengjun, HU Tianyu, LEI Xiaoyong, et al. Design and analysis of conformal transparent wideband metamaterial Absorber[J]. Electronic Components and Materials, 2022, 41(7): 699-706.
[31] PALANISAMY S, TUNAKOVA V, MILITKY J. Fiber-based structures for electromagnetic shielding–comparison of different materials and textile structures[J]. Textile Research Journal, 2018, 88(17): 1992-2012.
[32] 于永涛, 王彩霞, 刘元军, 等. 吸波复合材料的研究进展[J]. 丝绸, 2019, 56(12): 50-58.
YU Yongtao, WANG Caixia, LIU Yuanjun, et al. Research progress of wave absorbing composites[J]. Journal of Silk, 2019, 56(12): 50-58.
[33] 王威. 基于超材料的低频化吸波体的设计[D]. 南京: 南京理工大学, 2020: 36-48.
WANG Wei. Design of Low Frequency Chemoabsorbent Based on Metamaterials[D]. Nanjing: Nanjing University of Science and Technology, 2020: 36-48.
[34] CHEN F, CHENG Y Z, LUO H. A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene[J]. Materials, 2020, 13(4): 860-871.
[35] YANG Y L, WANG J P, SONG C Y, et al. Electromagnetic shielding using flexible embroidery metamaterial absorbers: design, analysis and experiments[J]. Materials & Design, 2022, 222: 1-11.
[36] 曹旭有. 微波段柔性复合材料的宽频吸波仿真模拟研究[D]. 天津: 天津工业大学, 2022: 39-63.
CAO Xuyou. Broadband Absorption Simulation of Flexible Composites in Microwave Segment[D]. Tianjin: Tiangong University, 2022: 39-63.
[37] YANG Y L, SONG C Y, PEI R, et al. Design, characterization and fabrication of a flexible broadband metamaterial absorber based on textile[J]. Additive Manufacturing, 2023, 69. DOI: 10.1016/j.addma.2023.103537.
[38] LI Y P, WANG X C, PAN Z, et al. Analysis of shielding effectiveness in different kinds of electromagnetic shielding fabrics under different test conditions[J]. Textile Research Journal, 2019, 89(3): 375-388.
[39] DAI A H, SUN W J. Mechanisms of nadph oxidase biological effects in the electromagnetic radiation[J]. Progress in Biochemistry and Biophysics, 2014, 41(12): 1222-1227.
[40] ZAFAR M F, MASUD U, RASHID A, et al. Comment on 'An ultrathin and broadband radar absorber using metamaterials'[J]. Waves in Random and Complex Media, 2022, 32(6): 2872-2877.
[41] 杨庆生, 粘向川, 张婧, 等. 智柔超材料及其力学性能的研究进展[J/OB]. 固体力学学报, 2023: 1-24. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.039.
YANG Qingsheng, NIAN Xiangchuan, ZHANG Jing, et al. Recent research progress on intelligent flexible mechanical matamaterials and their properties[J/OB]. Chinese Journal of Solid Mechanics, 2023: 1-24. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.039.
[42] 刘宏燕, 颜悦, 望咏林, 等. 透明导电氧化物薄膜材料研究进展[J]. 航空材料学报, 2015, 35(04): 63-82.
LIU Hongyan, YAN Yue, WANG Yonglin, et al. Research progress on transparent conductive oxide thin film materials[J]. Journal of Aerospace Materials, 2015, 35(4): 63-82.
[43] 刘瑞. 超宽带柔性超材料吸波器研究[D]. 太原: 中北大学, 2021: 20-51.
LIU Rui. Research on Ultra-wideband Flexible Metamaterial Absorber[D]. Taiyuan: North University of China, 2021: 20-51.
[44] MIN P P, SONG Z C, YANG L, et al. Optically transparent flexible broadband metamaterial absorber based on topology optimization design[J]. Micromachines, 2021, 12(11): 1419-1433.
[45] 刘婧雯. 基于方环嵌套结构的超材料吸波器研究[D]. 太原: 中北大学, 2023: 35-50.
LIU Jingwen. Research on Metamaterial Wave Absorber Based on Square Ring Nested Structure[D]. Taiyuan: North University of China, 2023: 35-50.
[46] 王玲玲. 新型电磁超材料吸波器研究[D]. 南京: 南京航空航天大学, 2018.
WANG Lingling. Research on New Electromagnetic Metamaterial Wave Absorber[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[47] GUO X R, ZHANG Z, WANG J H, et al. The design of a triple-band wide-angle metamaterial absorber based on regular pentagon close-ring[J]. Journal of Electromagnetic Waves and Applications, 2013, 27(5): 629-637.
[48] LI X, WEN C Y, YANG L T, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy[J]. Carbon, 2021, 175: 509-518.
[49] HAN C, ZHONG R B, LIANG Z K, et al. Independently tunable multipurpose absorber with single layer of metal-graphene metamaterials[J]. Materials, 2021, 14(2): 284-295.
[50] WU P H, ZENG X T, SU N, et al. Near-infrared perfect absorber based on critical coupling of circular cross metals and single-layer graphene[J]. Diamond and Related Materials, 2022, 127: 1-8.
[51] ZHENG H Y, CHEN L Y, LEE Y. High-performance and flexible metamaterial wave absorbers with specific bandwidths for the microwave device[J]. Crystals, 2023, 13(6): 868-877.
[52] 汪江宇. 基于超表面的多功能平面电磁波前调控器件研究[D]. 成都: 电子科技大学, 2023.
WANG Jiangyu. Research on Multifunctional Planar Electromagnetic Wave Front Control Devices Based on Metasurface[D]. Chengdu: University of Electronic Science and Technology of China, 2023.
[53] 王俊茹. 超材料吸波体设计及其3D打印制备工艺研究[D]. 西安: 西安理工大学, 2023: 6-28.
WANG Junru. Research on the Design and 3D Printing Process of Metamaterial Absorber[D]. Xi'an: Xi'an University of Technology, 2023: 6-28.
[54] SHEN Y, ZHANG J P, PANG Y Q, et al. Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction[J]. Scientific Reports, 2018, 8(1): 4423-4433.
[55] ZHOU Q, XUE B, GU S Y, et al. Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials[J]. Results in Physics, 2022, 38: 105587-105593.
[56] SHI Y P, DUAN Y P, HUANG L X, et al. Bio-inspired hierarchical chiral metamaterials: near-field coupling and decoupling effects modulating microwave-stealth properties[J]. Advanced Optical Materials, 2022, 10(20): 1-10.
[57] CHEN J Y, ZHANG H Y, JI H, et al. Origami tunable frequency selective fabric and its tuning mechanism[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 1-9.
[58] KROGH C M, HARRINGTON M E. Wind turbine electromagnetic energy: exploring risk of harm to human health[J]. Alternative Therapies in Health and Medicine, 2019, 25(3): 32-38.
[59] 邓光晟, 陈文卿, 余振春, 等. 基于导电塑料膜的角度不敏感宽带超材料吸波体设计及制备[J]. 光学学报, 2022, 42(22): 119-126.
DENG Guangsheng, CHEN Wenqing, YU Zhenchun, et al. Design and preparation of angle-insensitive wideband metamaterial absorber based on conductive plastic film[J]. Acta Optica Sinica, 2022, 42(22): 119-126.
[60] PENDRY J, ZHOU J, SUN J B. Metamaterials: from engineered materials to engineering materials[J]. Engineering, 2022, 17(17): 1-2.
|