[1] 袁帅霞, 张佳文, 蔡英, 等. 竹纤维基日间被动辐射制冷膜的制备与性能[J]. 浙江理工大学学报(自然科学版), 2022, 47(6): 893-899.
YUAN Shuaixia, ZHANG Jiawen, CAI Ying, et al. Preparation of a bamboo fiber-based film for passive daytime radiative cooling and its properties [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2022, 47(6): 893-899.
[2] LEI L, SHI S, WANG D, et al. Recent advances in thermoregulatory clothing: Materials, mechanisms, and perspectives[J]. ACS Nano, 2023, 17(3): 1803-1830.
[3] PENG Y, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742.
[4] 张小双, 李耀刚, 张青红, 等. SiO_2/PA6辐射降温长丝及其织物的制备及性能研究[J]. 化工新型材料, 2023, 51(2): 235-238.
ZHANG Xiaoshuang, LI Yaogang, ZHANG Qinghong, et al. Preparation and properties of passive radiative cooling SiO_2/PA6 fiber and fabrics[J]. New Chemical Materials, 2023, 51(2): 235-238.
[5] IQBAL M I, LIN K, SUN F, et al. Radiative cooling nanofabric for personal thermal management[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23577-23587.
[6] 韩梦瑶, 任松, 葛灿, 等. 用于个人热管理的被动调温服装材料研究进展[J]. 现代纺织技术, 2023, 31(1): 92-103.
HAN Mengyao, REN Song, GE Can, et al. Research progress of passive temperature-regulated clothing materials for personal thermal management [J]. Advanced Textile Technology, 2023, 31(1): 92-103.
[7] 曾少宁, 胡佳雨, 张曼妮, 等. 面向个人热管理的降温纺织品[J]. 科学通报, 2022, 67(11): 1167-1179.
ZENG Shaoning, HU Jiayu, ZHANG Manni, et al. Cooling textiles for personal thermal management [J]. Chinese Science Bulletin, 2022, 67(11): 1167-1179.
[8] MAITY S. Optimization of processing parameters of in situ polymerization of pyrrole on woollen textile to improve its thermal conductivity[J]. Progress in Organic Coatings, 2017, 107: 48-53.
[9] WAN X, WANG F. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126: 636-648.
[10] HASSABO A G, MOHAMED A L. Enhancement the thermo-regulating property of cellulosic fabric using encapsulated paraffins in modified pectin[J]. Carbohydrate Polymers, 2017, 165: 421-428.
[11] NEJMAN A, CIEŚLAK M. The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules[J]. Applied Thermal Engineering, 2017, 127: 212-223.
[12] ZHAO M, GAO C, WANG F, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
[13] 周茜雅, 郑晴, 柯莹. 液冷背心冰水比例对人体热湿舒适性的影响[J]. 丝绸, 2023, 60(9): 44-51.
ZHOU Xiya, ZHENG Qing, KE Ying. Effects of the proportion of ice and water on the performance of liquid-cooling vests [J]. Journal of Silk, 2023, 60(9): 44-51.
[14] GUO T, SHANG B, DUAN B, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015, 49: 47-54.
[15] 任首龙, 陆庭中, 唐波, 等. 辐射冷却材料研究进展[J]. 化工进展, 2022, 41(4): 1982-1993.
REN Shoulong, LU Tingzhong, TANG Bo, et al. Research progress on radiative cooling materials [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993.
[16] TONG J K, HUANG X, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. Acs Photonics, 2015, 2(6): 769-778.
[17] HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
[18] PENG Y, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1(2): 105-112.
[19] CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): 1802152.
[20] QIU C, QIU Y, ZHANG Y, et al. Enhancement of intrinsic temperature reduction for plasma surface-modified nanoparticle-doped low-density polyethylene films [J]. Crystals 2023, 13(4): 707.
|