[1] 靳文哲, 吕文涛, 郭庆, 等. 基于改进3E-LDA的织物图像分类算法[J/OL]. 现代纺织技术: 1-9[2023-12-12]. http://kns.cnki.net/kcms/detail/33.1249.TS.20231102.0927.004.html.
JIN Wenzhe, LÜ Wentao, GUO Qing, et al. Fabric image classification algorithm based on improved 3E-LDA[J/OL]. Advanced Textile Technology: 1-9 [2023-12-12]. http://kns.cnki.net/kcms/detail/33.1249.TS.20231102.0927.004.html.
[2] 吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
LÜ Wentao, LIN Qiqi, ZHONG Jiaying, et al. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11): 197-206.
[3] 毛兆华, 万贤福, 汪军, 等.基于字典学习的机织物图像重构[J].东华大学学报(自然科学版),2016,42(1):35-39.
MAO Zhaohua, WAN Xianfu, WANG Jun, et al. Woven fabric image reconstruction based on dictionary learning[J].Journal of Donghua University (Natural Science), 2016,42 (1): 35-39.
[4] 付晗, 胡峰, 龚杰, 等. 面向织物疵点检测的缺陷重构方法 [J]. 纺织学报, 2023, 44(7): 103-109.
FU Han, HU Feng, GONG Jie, et al. Defect reconstruction algorithm for fabric fault detection [J]. Journal of Textile Research, 2023, 44(7): 103-109.
[5] 占竹, 王凯, 李立轻, 等. 基于通用学习字典的机织物纹理表征[J]. 棉纺织技术, 2021, 49(1): 34-39.
ZHAN Zhu, WANG Kai, LI Liqing, et al. Woven Fabric Texture Characterization Based on General Dictionary [J]. Cotton Textile Technology, 2021, 49 (1): 34-39.
[6] 彭然, 胡立文, 邓中民. 基于Radon变换和能量曲线的机织物密度检测[J]. 棉纺织技术, 2021, 49(4):16-20.
PENG Ran, HU Liwen, DENG Zhongmin. Detection of Woven Fabric Density Based on Radon Transform and Energy Curve [J]. Cotton Textile Technology, 2021,49 (4): 16-20.
[7] 曾艳, 王萌, 邢婷婷, 等. 一种改进的压缩感知彩色图像重构框架[J]. 计算机应用与软件, 2023, 40(9): 248-252.
ZENG Yan, WANG Meng, XING Tingting, et al. AN IMPROVED FRAMEWORK FOR COLOR IMAGE RECONSTRUCTION BASED ON [J]. Computer Applications and Software, 2023,40 (9): 248-252.
[8] 赵东波, 李辉. 基于改进平滑L0算法的图像重构[J].信息技术, 2023, 47(9): 103-107.
ZHAO Dongbo, LI Hui. lmage reconstruction based on improved Smoothing L0 algorithm [J]. Information Technology, 2023, 47(9): 103-107.
[9] BABACAN S D, MOLINA R, KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing Society, 2010, 19(1): 53-63.
[10] ZHANG Y, QI X, JIANG Y, et al. Image Reconstruction for low-oversampled staggered SAR based on Sparsity Bayesian learning in the presence of a nonlinear PRI variation strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-24.
[11] 张睿颖. 稀疏表示图像去噪算法研究及在海浪反演中的应用[D]. 大连: 大连海洋大学, 2023: 8-53.
ZHANG Ruiying. Research on Sparse Representation based Image Denoising Algorithm and Its Application in Wave Inversion [D]. Dalian: Dalian Ocean University, 2023:8-53.
[12] 杨孟宇. 基于压缩感知的高光谱图像重构算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2023: 9-64 .
YANG Mengyu. Research on Hyperspectral Image Reconstruction Algorithm Based on Compressed Sensing [D]. Harbin: Harbin University of Science and Technology, 2023: 9-64.
[13] 毛璐. 基于稀疏表示的逆问题研究[D]. 西安: 西安石油大学, 2023: 6-54.
MAO Lu. Research on inverse problem based on sparse representation [D]. Xi'an: Xi'an Shiyou University, 2023: 6-54.
[14] JIANG Z, LIN Z, DAVIS L S. Label consistent K-SVD: Learning a discriminative dictionary for recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(11): 2651-2664.
[15] JING J, FAN X, LL P. Patterned fabric defect detection via convolutional matching pursuit dual-dictionary[J]. Optical Engineering, 2016, 55(5): 053109.
[16] ZHAN Z, LI L, CHEN X, et al. Discriminative-shared dictionary learning for class-specific fabric texture characterization[J]. Textile Research Journal, 2020, 90(21/22): 2478-2491.
[17] LÜ W, ZHOU D, WANG C, et al. A novel discriminative dictionary learning method for image classification[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023, 106(6): 932-937.
[18] AL-SHOUKAIRI M, SCHNITER P, RAO B D. A GAMP-based low complexity sparse Bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 294-308.
[19] 李德高, 程涛, 许聪, 等. 基于后验信息的压缩感知图像重构方法[J]. 广西科技大学学报, 2023, 34(4): 12-16.
LI Degao, CHENG Tao, XU Cong, et al. Compressed sensing image reconstruction method based on posterior information [J]. Journal of Guangxi University of Science and Technology, 2023,34 (4): 12-16.
[20] DUAN H, YANG L, FANG J, et al. Fast inverse-free sparse Bayesian learning via relaxed evidence lower bound maximization[J]. IEEE Signal Processing Letters, 2017, 24(6): 774-778.
[21] DONG J, LÜ W, ZHOU D, et al. Variational Bayesian and generalized approximate message passing-based Sparse Bayesian learning model for image reconstruction[J]. IEEE Signal Processing Letters, 2022, 29: 2328-2332.
[22] WIPF D P, RAO B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal processing, 2004, 52(8): 2153-2164.
[23] ZHANG Z, RAO B D. Recovery of block sparse signals using the framework of block sparse Bayesian learning[C]// IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012: 3345-3348.
[24] SERRA J G, TESTA M, MOLINA R, et al. Bayesian K-SVD using fast variational inference[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3344-3359.
[25] FOX C W, ROBERTS S J. A tutorial on variational Bayesian inference[J]. Artificial intelligence review, 2012, 38: 85-95.
[26] 苏挺超, 沈映珊. 基于分层贝叶斯模型的图像修复方法[J]. 计算机应用与软件, 2023, 40(10): 261-267.
SU Tingchao, SHEN Yingshan. IMAGE INPAINTING METHOD BASED ON HIERARCHICAL BAYESIAN MODEL [J]. Computer Applications and Software, 2023,40 (10): 261-267.
[27] 甘宜超. 基于贝叶斯理论的雷达成像技术研究[D]. 西安: 西安电子科技大学, 2020: 14-73.
GAN Yichao. Research on Radar Imaging Technology Based on Bayesian Theory [D]. Xi'an: Xidian University, 2020: 14-73.
[28] LÜ W, WANG J, YU W, et al. Improvement of semi-random measurement matrix for compressed sensing[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 97(6): 1426-1429.
[29] ELAD M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702.
[30] DUARTE-CARVAJALINO J M, SAPIRO G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1395-1408.
[31] TIANCHI A. Smart diagnosis of cloth flaw dataset[EB/OL]. (2020-10-21)[2021-11-05]. https://tianchi.aliyun.com/dataset/dataDetail?dataId=79336.
[32] ZHANG C, FENG S, WANG X, et al. Zju-leaper: A benchmark dataset for fabric defect detection and a comparative study[J]. IEEE Transactions on Artificial Intelligence, 2020, 1(3): 219-232.
|