[1] JEON Y, JIN S, HAN K. FANCY: human-centered, deep learning-based framework for fashion style analysis[C]//Proceedings of the Web Conference 2021. Ljubljana, Slovenia. ACM, 2021: 2367-2378.
[2] RYDING D, CLAUDIA, RUDAWSKA E, et al. Extending the consumer style inventory to define consumer typologies for secondhand clothing consumption in Poland[J].European Research Studies Journal, 2020: 410-433.
[3] TAKAGI M, SIMO-SERRA E, IIZUKA S, et al. What makes a style: experimental analysis of fashion prediction[C]// 2017 IEEE International Conference on Computer Vision Workshops. Venice. IEEE, 2017: 2247-2253.
[4] 李扬, 黄荣, 董爱华. 基于改进Bilinear-CNN的服装图像风格识别[J].东华大学学报(自然科学版),2021,47(3):90-95.
LI Yang, HUANG Rong, DONG Aihua. Fashion style recognition based on an improved Bilinear-CNN[J]. Journal of Donghua University(Natural Science),2021,47(3):90-95.
[5] WOOTTISART P, SRIPIAN P, THANASUAN K. The study of fashion style classification: harajuku-type kawaii and street fashion[C]//2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). Dijon, France. IEEE, 2022: 402-408.
[6] AN H, LEE K Y, CHOI Y, et al. Conceptual framework of hybrid style in fashion image datasets for machine learning[J]. Fashion and Textiles, 2023, 10(1):18.
[7] MA Y, JIA J, ZHOU S, et al. Towards better understanding the clothing fashion styles: A multimodal deep learning approach[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA. ACM, 2017, 31(1):38-43.
[8] 石争浩, 李成建, 周亮, 等. Transformer驱动的图像分类研究进展[J]. 中国图象图形学报, 2023, 28 (9): 2661-2692.
SHI Zhenghao, LI Chengjian, ZHOU Liang, et al. Survey on Transformer for image classification[J]. Journal of Image and Graphics, 2023, 28 (9): 2661-2692.
[9] 曾华福, 杨杰, 李林红. 基于改进ShuffleNet v1的服装图像分类算法[J]. 现代纺织技术, 2023, 31(2):23-35.
ZENG Huafu, YANG Jie, LI Linhong. Clothing image classification algorithm based on improved ShuffleNet v1[J]. Advanced Textile Technology,2023,31(2):23-35.
[10] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA. IEEE, 2022: 11976-11986.
[11] TAN M, LE Q. Efficientnetv2: Smaller models and faster training[C]//International Conference on Machine Learning. Stockholm, Sweden, PMLR, 2021: 10096-10106.
[12] DOLLAR P, SINGH M, GIRSHICK R. Fast and accurate model scaling[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA. IEEE, 2021: 924-932.
[13] 李翔, 张涛, 张哲, 等. Transformer在计算机视觉领域的研究综述[J].计算机工程与应用, 2023, 59 (1): 1-14.
LI Xiang, ZHANG Tao, ZHANG Zhe, et al.Survey of transformer research in computer vision[J].Computer Engineering and Applications, 2023, 59 (1): 1-14.
[14] 徐继伟, 杨云. 集成学习方法:研究综述[J]. 云南大学学报(自然科学版), 2018, 40 (6): 1082-1092.
XU Jiwei, YANG Yun. Ensemble learning methods: A research review[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40 (6): 1082-1092.
|