[1] HABIBI P, MORADI G, DEHGHAN H, et al. The impacts of climate change on occupational heat strain in outdoor workers: A systematic review[J]. Urban Climate, 2021, 36: 100770.
[2] YANG B, DING X, WANG F, et al. A review of intensified conditioning of personal micro-environments: Moving closer to the human body[J]. Energy and Built Environment, 2021, 2(3): 260-270.
[3] VESELÝ M, ZEILER W. Personalized conditioning and its impact on thermal comfort and energy performance–A review[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 401-408.
[4] ZHAO D, LU X, FAN T, et al. Personal thermal management using portable thermoelectrics for potential building energy saving[J]. Applied Energy, 2018, 218: 282-291.
[5] PENG L, SU B, YU A, et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 2019, 26(11): 6415-6448.
[6] FANG Y, ZHAO X, CHEN G, et al. Smart polyethylene textiles for radiative and evaporative cooling[J]. Joule, 2021, 5(4): 752-754.
[7] 党天华, 赵蒙蒙, 钱静. 基于微型风扇阵列的通风服研发与测评[J]. 现代纺织技术, 2022, 30(4): 214-221.
DANG Tianhua, ZHAO Mengmeng, QIAN Jing. Development and evaluation of ventilation clothing based on micro fan array[J]. Advanced Textile Technology, 2022, 30(4): 214-221.
[8] 吴国珊, 刘何清, 吴世先, 等. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145.
WU Guoshan, LIU Heqing, WU Shixian, et al. Cooling capacity of personal ventilation systems in different environments [J]. Journal of Textile Research, 2021, 42(10): 139-145.
[9] 米立华. 气冷服与体表空间内流动传热模拟研究[D]. 湘潭: 湖南科技大学, 2019.
MI Lihua. Simulation of Flow and Heat Transfer in Air Cooling Garment and Surface Space[D]. Xiangtan: Hunan University of Science and Technology, 2019.
[10] LOU L, SHOU D, PARK H, et al. Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving[J]. Energy and Buildings, 2020, 226: 110374.
[11] 曹海山. 热电制冷技术进展与展望[J]. 制冷学报, 2022, 43(4): 26-34.
CAO Haishan. Progress and prospect of thermoelectric refrigeration[J]. Journal of Refrigeration, 2022,43(4) : 26-34.
[12] 张昭华, 陈之瑞, 李璐瑶, 等. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
ZHANG Zhaohua, CHEN Zhirui, LI Luyao, et al.[J]. Airflow sensitivity of human local human skin and its influencing factor[J]. Journal of Textile Research, 2021, 42 (12): 125-130.
[13] ZHAO M, GAO C, WANG F, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
[14] FAN C, ZHANG Z, LI L. Sensitivity and preference of local airflows beneath garments with personalised temperatures and velocities[J]. Building and Environment, 2023, 234:110128.
[15] DING Y, ZHANG Z, CHEN Z. Effect of local ventilation temperature and speed under garments on the thermal response of humans at different metabolic rates[J]. Applied Ergonomics, 2023, 113: 104102.
[16] GUO T, SHANG B, DUAN B, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015, 49: 47-54.
[17] 舒伟程. 便携式液冷服系统设计及其热舒适性研究[D]. 武汉: 华中科技大学, 2021.
SHU Weicheng. Design of Portable Liquid Cooling Garment and Its Thermal Comfort Study[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[18] SHU W, ZHANG X, YANG X, et al. A smart temperature-regulating garment for portable, high-efficiency and comfortable cooling[J]. Journal of Electronic Packaging, 2022, 144(3): 031010.
[19] XU Y, LI Z, WANG J, et al. Man-portable cooling garment with cold liquid circulation based on thermoelectric refrigeration[J]. Applied Thermal Engineering, 2022, 200: 117730.
[20] ZHANG M, LI Z, WANG Q, et al. Research on refrigerant optimization and characteristic parameters based on thermoelectric refrigeration cooling garment[J]. Applied Thermal Engineering, 2022, 212: 118606.
[21] GAO C, KUKLANE K, HOLMÉR I. Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area[J]. Ergonomics, 2010, 53(5): 716-723.
[22] GAO C, KUKLANE K, HOLMÉR I. Cooling vests with phase change materials: The effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6): 1207-1216.
[23] MNEIMNEH F, GHADDAR N, GHALI K, et al. Experiment study for evaluation of phase change material cooling vest’s effectiveness at two melting points used by people with paraplegia during exercise[J], 2020, 11: 1-9.
[24] RYKACZEWSKI K. Rational design of sun and wind shaded evaporative cooling vests for enhanced personal cooling in hot and dry climates[J]. Applied Thermal Engineering, 2020, 171: 115122.
[25] MALEY M, MINETT G M, BACH A J, et al. Extending work tolerance time in the heat in protective ensembles with pre-and per-cooling methods[J]. Applied Ergonomics, 2020, 85: 103064.
[26] AARISH M, MAHMOOD R, MAHMOOD M, et al. Study on an evaporative cooling vest for farm workers[J]. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 2020, 6: 116-121.
[27] ZENG S, PIAN S,SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. [J]. Science, 2021, 373 (6555): 692-696.
[28] CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30 (35): 1802152.
[29] 韦帆汝, 王发明. 基于相变材料与微型通风风扇的新型个体混合冷却服在温热环境下的制冷效果研究[J]. 丝绸, 2016, 53(3): 1-8.
WEI Fanru, WANG Faming. The cooling performance of a portable hybrid personal cooling system(PCS) based on phase change materials and micro-ventilation fans in a warm environment[J]. Journal of Silk, 2016,53(3): 1-8.
[30] WAN X, WANG F, UDAYRAJ. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126: 636-648.
[31] WANG F, SONG W. An investigation of thermophysiological responses of human while using four personal cooling strategies during heatwaves[J]. Journal of Thermal Biology, 2017, 70: 37-44.
[32] SONG W, WANG F, ZHANG C, et al. On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment[J]. Building and Environment, 2015, 94: 704-713.
[33] SORA S, HAE-HYUN C, BIN K Y, et al. Evaluation of body heating protocols with graphene heated clothing in a cold environment[J]. International Journal of Clothing Science and Technology, 2017, 29(6): 830-844.
[34] XU J, GAO L, XIAO M, et al. Isogeometric topology optimization for rational design of ultra-lightweight architected materials[J]. International Journal of Mechanical Sciences, 2020, 166: 105103.
[35] UDAYRAJ, LI Z, KE Y, et al. A study of thermal comfort enhancement using three energy-efficient personalized heating strategies at two low indoor temperatures[J]. Building and Environment, 2018, 143: 1-14.
[36] 杨玉桐. 冷环境下局部电加热对人体热反应的影响[D].上海: 东华大学,2021.
YANG Yutong. Effect of Local Electric Heating on Human Thermal Response in Cold Environment[D]. Shanghai: Donghua University, 2021.
[37] HSU P, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano letters, 2015, 15(1): 365-371.
[38] WEI X, XIAO Y. Polyester fabric impregnated with carbon nanotubes directly to form a flexible heating fabric[J]. Journal of Physics: Conference Series, 2022, 2206(1): 012041.
[39] CHAI J, KANG Z, YAN Y, et al. Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation[J]. Cell Reports Physical Science, 2022, 3(7): 100958.
[40] MELOCCHI A, UBOLDI M, CEREA M, et al. Shape memory materials and 4D printing in pharmaceutics[J]. Advanced Drug Delivery Reviews, 2021, 173: 216-237.
[41] WANG Y, YU X, LIU R, et al. Shape memory active thermal-moisture management textiles[J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107037.
[42] ROACH D, YUAN C, KUANG X, et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19514-19521.
[43] SHAID A, WANG L, ISLAM S, et al. Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile[J]. Applied Thermal Engineering, 2016, 107: 602-611.
[44] TANG J, LIU Y, DU H, et al. The effects of portable cooling systems on thermal comfort and work performance in a hot environment[J]. Building Simulation, 2021, 14(6):1667-1683.
[45] YONG L, SUMATHY K. Performance analysis of a continuous multi-bed adsorption rotary cooling system[J]. Applied Thermal Engineering, 2005, 25(2-3): 393-407.
[46] CRITOPH R, METCALF S. Specific cooling power intensification limits in ammonia–carbon adsorption refrigeration systems[J]. Applied Thermal Engineering, 2004, 24(5-6): 661-678.
[47] 辛丽莎,李俊,王云仪. 防护服装功能设计模式研究[J]. 纺织学报, 2011, 32(11): 119-125.
XIN Lisha, LI Jun, WANG Yunyi. Research on functional design pattern of protective clothing [J].Journal of Textile Research, 2011,32(11): 119-125.
[48] YANG Y, STAPLETON J, DIAGNE B, et al. Man-portable personal cooling garment based on vacuum desiccant cooling[J]. Applied Thermal Engineering, 2012, 47: 18-24.
[49] ZHANG M, LI Z, XU Y, et al. Design and research of liquid cooling garments in thermal environment[J]. International Journal of Refrigeration, 2022, 139: 136-147.
[50] XIAO Y, ZHANG L R, LI L X. Investigation of processing factors affecting flexible heating wire by coating polyester yarns with carbon nanotubes[J]. IOP Conference Series: Materials Science and Engineering, 2020, 770(1): 012051.
[51] CHEN X, ZHANG Z, YANG Y. Preferred local electrical heating and its effect on overall thermal response[J]. International Journal of Clothing Science and Technology, 2023, 35(4): 526-544.
[52] 王富香. 人体姿势对电加热服加热效果及着装人体热舒适的影响研究[D].上海: 东华大学, 2023.
WANG Fuxiang. Effect of Human Postures on The Heating Performance and Thermal Comfort of Human Body in Electric Heating Suit[D]. Shanghai: Donghua University, 2023.
[53] LIU X, JIN X, LI L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance[J]. Journal of Materials Chemistry A, 2020, 8(25): 12526-12537.
[54] GUO Z, SUN C, WANG J, et al. High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management[J]. ACS Applied Materials Interfaces, 2021,13(7): 8851-8862.
[55] CHEN W, WEI X, LIU W, et al. Dual-functional thermal management textiles for dynamic temperature regulation based on ultra-stretchable spiral conductive composite yarn with 500%-strain thermal stability and durability[J]. Materials Horizons, 2024, 11(3): 792-802.
[56] HOYT T, ARENS E, ZHANG H. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings[J]. Building and Environment, 2015, 88: 89-96.
[57] LI Z, KE Y, YANG B et al.Personal cooling strategies to improve thermal comfort in warm indoor environments: Comparison of a conventional desk fan and air ventilation clothing[J]. Energy and Buildings, 2018, (174): 439-451.
[58] KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment, 2018, 145: 85-95.
[59] VISSERS D. The Human Body as Sensor for Thermal Comfort Control[D]. Eindhoven University of Technology, 2012.
[60] LOU L, ZHOU Y, YAN Y, et al. Wearable cooling and dehumidifying system for personal protective equipment (PPE)[J]. Energy and Buildings, 2022, 276: 112510.
[61] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019, 5(5): 0536. |