[1] CAO P, ZHAO L, ZHANG J, et al. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19109-19116.
[2] 何泓贝, 朱清楷, 任海涛. 织物基太阳能蒸发器的研究进展[J]. 现代纺织技术, 2023, 31(6): 267-276.
HE Hongbei, ZHU Qingkai, REN Haitao. Research progress on fabric-based solar evaporators[J]. Advanced Textile Technology, 2023, 31(6): 267-276.
[3] 王诚, 董欣欣, 张华, 等. 光热-光催化双功能Au@Cu2O二元异质结的制备及其对水的清洁处理 [J]. 现代纺织技术, 2023, 31(6): 43-50.
WANG Cheng, DONG Xinxin, ZHANG Hua, et al. Preparation of bifunctional Au@Cu2O binary heterojunctions with photothermal effect and photocatalysis for clean water generation[J]. Advanced Textile Technology,2023, 31(6) : 43-50.
[4] YU Z, GU R, TIAN Y, et al. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy [J]. Advanced Functional Materials, 2022, 32(17): 2108586.
[5] 江代君, 郑臻, 吴炎琳, 等. 界面光热蒸发器的研究进展[J]. 太阳能, 2021(11): 19-28.
JIANG Daijun, ZHENG Zhen, WU Yanlin, et al. Research progress of interfacial photothermal evaporation devices[J]. Solar Energy, 2021(11): 19-28.
[6] 刘小钰, 汪路, 张智勇, 等. 界面太阳能蒸发的应用研究进展[J]. 材料导报, 2022, 36(19): 5-20.
LIU Xiaoyu, WANG Lu, ZHANG Zhiyong, et al. Research progress of the applications of interfacial solar steam generation[J]. Materials Reports, 2022, 36(19): 5-20.
[7] ZHU L, GAO M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications[J]. Nano Energy, 2019, 57: 507-518.
[8] SHI L, SUN K, ZHANG G, et al. Hybrid nanofibrous aerogels for all-in-one solar-driven interfacial evaporation[J]. Journal of Colloid and Interface Science, 2022, 624: 377-384.
[9] ZHANG D, LIANG Q, ZHOU Z, et al. Multifunctional bacterial cellulose photothermal aerogels with multi-bonded network assisted by carbon nanotube[J]. Chemical Engineering Journal, 2023, 470: 144436.
[10] NGUYEN H G, NGUYEN T A H, DO D B, et al. Natural cellulose fiber-derived photothermal aerogel for efficient and sustainable solar desalination[J]. Langmuir, 2023, 39(19): 6780-6793.
[11] REN Y, LIAN R, LIU Z, et al. CNT/polyimide fiber-based 3D photothermal aerogel for high-efficiency and long-lasting seawater desalination[J]. Desalination, 2022, 535: 115836.
[12] NOUREEN L, WANG Q, ISMAIL P M, et al. Multifunctional aerogel with antibiofouling properties for efficient solar steam generation and seawater desalination[J]. Nano Today, 2024, 54: 102130.
[13] SHUAI S, YUAN C, WENG Y, et al. A low-cost, high-efficient and robust-mechanical aerogel made of melamine sponge and carbon black for solar interfacial water evaporation[J]. Journal of Water Process Engineering, 2024, 61: 105334.
[14] ZHANG H, ZHANG M, LI J, et al. Aramid nanofiber-based functional composite materials: Preparations, applications and perspectives[J]. Composites Part B: Engineering, 2024, 271: 111151.
[15] CHEN H J, BAI Q Y, LIU M C, et al. Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: Mechanism, upcycling, closed-loop recycling[J]. Green Chemistry, 2021, 23(19): 7646-7658.
[16] 刘斐, 米舒, 张金洋, 等. CO2可逆溶剂中原位复合聚吡咯制备纤维素基光热转换气凝胶材料研究[J]. 化工新型材料, 2023, 51(11): 151-156.
LIU Fei, MI Shu, ZHANG Jinyang , et al. Preparation of cellulose-based photothermal conversion aerogel by in-situ polypyrrole compounding in CO2 reversible solvent[J]. New Chemical Materials, 2023, 51(11): 151-156.
[17] CAO K, SIEPERMANN C P, YANG M, et al. Reactive aramid nanostructures as high‐performance polymeric building blocks for advanced composites[J]. Advanced Functional Materials, 2013, 23(16): 2072-2080.
[18] YANG B, WANG L, ZHANG M, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
[19] 袁嘉欣, 王文豪, 黄铿, 等. 太阳能界面蒸发器热管理及抗盐性能研究进展[J]. 节能, 2024, 43(2): 118-122.
YUAN Jiaxin, WANG Wenhao, HUANG Keng, et al. Research progress on thermal management and salt resistance of solar interface evaporator[J]. Energy Conservation, 2024, 43(2): 118-122.
[20] 刘强, 肖维新, 罗渊, 等. 高效海水淡化的太阳能界面蒸发器研究进展[J]. 太阳能学报, 2024, 45(3): 591-602.
LIU Qiang, XIAO Weixin, LUO Yuan, et al. Research progress of solar interfacial evaporators for high-efficiency desalination[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 591-602.
[21] LUO N, ZHANG Y Y, ZHANG H, et al. Electromagnetic interference shielding performance of lightweight aramid nanofiber/graphene composite aerogels [J]. Journal of Materials Chemistry A, 2024, 12(17): 10359-10368.
[22] SHI L, LIN Y, HUAN S, et al. Lightweight aramid nanofiber aerogel with a hierarchical cellular structure for thermal insulation[J]. ACS Applied Polymer Materials, 2022, 4(12): 9305-9312.
[23] LI J, JING Y, QIAO M, et al. Vertical porous aerogel based on polypyrrole and bimetallic modified β-cyclodextrin polymer-chitosan for efficient solar evaporation[J]. International Journal of Biological Macromolecules, 2024, 258: 128987.
[24] QIN H, ZHANG Y, JIANG J, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269.
[25] VILLASMIL W, FISCHER L J, WORLITSCHEK J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 71-84.
[26] YANG X, YANG Y, FU L, et al. An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28(3): 1704505.
[27] MING X, GUO A, ZHANG Q, et al. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification[J]. Carbon, 2020, 167: 285-295.
[28] 程璟, 郭其景, 龙徐则, 等. MoS2/C-MMT双层气凝胶构建及其太阳能海水淡化性能[J]. 化工新型材料, 2023, 51(S2): 220-225.
CHENG Jing, GUO Qijing, LONG Xuze, et al. Construction of MoS2/C-MMT double-layer aerogels and their solar desalination performance[J]. New Chemical Materials, 2023, 51(S2): 220-225.
|