[1] 董志强, 郭东亮, 白金报. 清梳联智能化技术的发展与应用[J]. 棉纺织技术, 2019, 47(5): 10-14.
DONG Zhiqiang, GUO Dongliang, BAI Jinbao. Development and application of intelligent technology for blowing-carding unit[J]. Cotton Textile Technology, 2019, 47(5): 10-14.
[2] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48(1): 28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48(1): 28-33.
[3] 严绪东, 丁峰, 滕彬, 等. 粗细联智能纺纱生产线应用浅析[J]. 纺织器材, 2020, 47(1): 17-19.
YAN Xudong, DING Feng, TENG Bin, et al. Application analysis of the intelligent spinning production line of roving-spinning unit[J]. Textile Accessories, 2020, 47(1): 17-19.
[4] 董相杰, 黄克华, 易臻, 等. 全智能筒纱输送与包装系统的流程及效率分析[J]. 棉纺织技术, 2024, 52(1): 27-32.
DONG Xiangjie, HUANG Kehua, YI Zhen, et al. Process and efficiency analysis of intelligent cheese yarn conveying and packaging system[J]. Cotton Textile Technology, 2024, 52(1): 27-32.
[5] 聂晶, 袁亦辰, 李景彬, 等. 棉纺筒纱自动打包系统设计[J]. 上海纺织科技, 2023, 51(3): 14-18.
NIE Jing, YUAN Yichen, LI Jingbin, et al. Design of automatic packing system for cotton spinning tube yarn[J]. Shanghai Textile Science & Technology, 2023, 51(3): 14-18.
[6] 葛陈鹏, 季承, 糜娜, 等. 基于制造执行系统的纺纱企业智能化转型探讨[J]. 棉纺织技术, 2021, 49(10): 42-46.
GE Chenpeng, JI Cheng, MI Na, et al. Intelligent transformation discussion of spinning enterprise based on manufacturing execution system[J]. Cotton Textile Technology, 2021, 49(10): 42-46.
[7] 陈新鹤, 海洋, 李光海, 等. 基于集成信息监控系统的纺纱智能化管理[J]. 棉纺织技术, 2019, 47(5): 15-18.
CHEN Xinhe, HAI Yang, LI Guanghai, et al. Spinning intelligent management based on integration information monitoring system[J]. Cotton Textile Technology, 2019, 47(5): 15-18.
[8] 赵薇玲, 章军辉, 陈明亮, 等. 人工智能技术驱动的纺纱质量预测研究进展[J]. 丝绸, 2023, 60(4): 61-70.
ZHAO Weiling, ZHANG Junhui, CHEN Mingliang, et al. Research progress on yarn quality prediction based on artificial intelligence technology[J]. Journal of Silk, 2023, 60(4): 61-70.
[9] 张立敏, 林恒灿, 吴涛. 基于RFID的纺纱机械故障检测系统[J]. 计算机应用与软件, 2017, 34(3): 119-122.
ZHANG Limin, LIN Hengcan, WU Tao. Fault detection system for textile machinery based on RFID[J]. Computer Applications and Software, 2017, 34(3): 119-122.
[10] 倪远, 刘广喜. 环锭纺纱条监测技术应用与发展[J]. 纺织器材, 2023, 50(1): 15-22.
NI Yuan, LIU Guangxi. Application and development of yarn sliver monitoring technology of ring spinning[J]. Textile Accessories, 2023, 50(1): 15-22.
[11] 赵楠楠, 王素英, 周义德, 等. 现代纺纱厂能耗量化分析与节能措施[J]. 棉纺织技术, 2023, 51(6): 48-52.
ZHAO Nannan, WANG Suying, ZHOU Yide, et al. Energy consumption quantitative analysis and energy-saving measures in modern spinning mill[J]. Cotton Textile Technology, 2023, 51(6): 48-52.
[12] 邵景峰, 马创涛. 一种多工序知识关联的纺纱质量智能控制模型[J]. 控制理论与应用, 2018, 35(6): 840-849.
SHAO Jingfeng, MA Chuangtao. Intelligent control model for yarn quality based on multi-process knowledge association[J]. Control Theory & Applications, 2018, 35(6): 840-849.
[13] 程隆棣, 张洁, 张红霞, 等. 棉纺智能化纺纱关键技术刍议[J]. 纺织导报, 2021, (6): 47-48, 50-53.
CHENG Longdi, ZHANG Jie, ZHANG Hongxia, et al. Discussion on the key technology of intelligent cotton spinning[J]. China Textile Leader, 2021, (6): 47-48, 50-53.
[14] 侯芝富, 朱春光, 宋圣山. 差别化纤维的纺纱质量控制要点[J]. 棉纺织技术, 2020, 48(9): 43-47.
HOU Zhifu, ZHU Chunguang, SONG Shengshan. Differential fiber spinning quality control key points[J]. Cotton Textile Technology, 2020, 48(9): 43-47.
[15] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
[16] ROMERO D, WUEST T, HARIK R, et al. Towards a cyber-physical PLM environment: the role of digital product models, intelligent products, digital twins, product avatars and digital shadows [J]. IFAC-PapersOnLine, 2020, 53(2): 10911-10916.
[17] KHERBACHE M, AHMED M, MAIMOUR M, et al. Constructing a Network Digital Twin through formal modeling: Tackling the virtual-real mapping challenge in IIoT networks [J]. Internet of Things, 2023, 24: 101000.
[18] DONG L, HU T, YUE P, et al. A product performance rapid simulation approach driven by digital twin data: Part 1. For variable product structures [J]. Advanced Engineering Informatics, 2024, 59: 102337.
[19] ZUO Y, YOU H, ZOU X, et al. Digital twin enhanced quality prediction method of powder compaction process [J]. Robotics and Computer-Integrated Manufacturing, 2024, 89: 102762.
[20] LOHAMN W, CORNELISSEN H, BORST J, et al. Building digital twins of cities using the Inter Model Broker framework [J]. Future Generation Computer Systems, 2023, 148: 501-513.
[21] LAREYRE F, ADAM C, CARRIER M, et al. Using digital twins for precision medicine in vascular surgery [J]. Annals of Vascular Surgery, 2020, 67: e577-e578.
[22] AGGARWAL P, NARWAL B, PUROHIT S, et al. BPADTA: Blockchain-based privacy-preserving authentication scheme for digital twin empowered aerospace industry [J]. Computers and Electrical Engineering, 2023, 111: 108889.
[23] 张霖, 陆涵. 从建模仿真看数字孪生[J]. 系统仿真学报, 2021, 33(5): 995-1007.
ZHANG Lin, LU Han. Discussing digital twin from of modeling and simulation[J]. Journal of System Simulation, 2021, 33(5): 995-1007.
[24] TAO F, QI Q, WANG L, et al. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison [J]. Engineering, 2019, 5(4): 653-661.
[25] FULLER A, FAN Z, DAY C, et al. Digital twin: enabling technologies, challenges and open research [J]. IEEE Access, 2020, 8: 108952-108971.
[26] PEREZ-VEREDA A, HERVAS R, CANAL C. Digital avatars: A programming framework for personalized human interactions through virtual profiles [J]. Pervasive and Mobile Computing, 2022, 87: 101718.
[27] LIU S, LU Y, SHEN X, et al. A digital thread-driven distributed collaboration mechanism between digital twin manufacturing units [J]. Journal of Manufacturing Systems, 2023, 68: 145-159.
[28] 郑小虎, 张洁. 数字孪生技术在纺织智能工厂中的应用探索[J]. 纺织导报, 2019, (3): 37-41.
ZHENG Xiaohu, ZHANG Jie. Application of digital twin technology in textile intelligent factory[J]. China Textile Leader, 2019 (3): 37-41.
[29] 李新荣, 韩鹏辉, 李瑞芬, 等. 数字孪生在纺纱领域应用的关键技术解析[J]. 纺织学报, 2023, 44(10): 214-222.
LI Xinrong, HAN Penghui, LI Ruifen, et al. Review and analysis on key technology of digital twin in spinning field[J]. Journal of Textile Research, 2023, 44(10): 214-222.
[30] 武臣, 薛元, 徐志武, 等. 纺纱过程的数字孪生技术及其智能控制模式实践[J]. 毛纺科技, 2021, 49(8): 82-90.
WU Chen, XUE Yuan, XU Zhiwu, et al. Digital twinning technology of spinning process and practice of its intelligent control mode[J]. Wool Textile Journal, 2021, 49(8): 82-90.
[31] 张保威, 焦帅帅, 江豪. 基于数字孪生的纺纱车间可视化管控系统开发及应用[J/OL]. 棉纺织技术, 1-6[2024-06-03]. http://kns.cnki.net/kcms/detail/61.1132.TS.20240311.1452.004.html.
ZHANG Baowei, JIAO Shuaishuai, JIANG Hao. Development and application of visual control system for spinning workshop based on digital twin[J/OL]. Cotton Textile Technology, 1-6[2024-06-03]. http://kns.cnki.net/kcms/detail/61.1132.TS.20240311.1452.004.html.
[32] 袁春妹. 北自科技:释放数字孪生效能[J]. 纺织机械, 2022, (3): 48-49.
YUAN Chunmei. Beizi technology: Unleashing digital twin efficiency[J]. Textile Machinery, 2022, (3): 48-49.
[33] 陆剑峰, 徐煜昊, 夏路遥, 等. 数字孪生支持下的设备故障预测与健康管理方法综述[J]. 自动化仪表, 2022, 43(6): 1-7.
LU Jianfeng, XU Yuhao, XIA Luyao, et al. Review of digital twin-enabled device prognostics and health management approaches[J]. Process Automation Instrumentation, 2022, 43(6): 1-7.
[34] TAO F, ZHANG M, LIU Y S, et al. Digital twin driven prognostics and health management for complex equipment [J]. CIRP Annals, 2018, 67(1): 169-172.
[35] 任尧, 袁嫣红, 向忠. 非接触式断纱检测系统设计[J]. 浙江理工大学学报(自然科学版), 2018, 39(2): 200-205.
REN Yao, YUAN Yanhong, XIANG Zhong. Design of non-contact yarn break detection system[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2018, 39(2): 200-205.
[36] 徐伟锋, 胡俊武, 祝新军, 等. 机器视觉在智能化纺纱生产中的应用现状[J]. 棉纺织技术, 2022, 50(5): 71-74.
XU Weifeng, HU Junwu, ZHU Xinjun, et al. Application status of machine vision in intelligent spinning production[J]. Cotton Textile Technology, 2022, 50(5): 71-74.
[37] 吕竞则, 戴宁, 胡旭东, 等. 静电荷感应式断纱传感器设计[J]. 现代纺织技术, 2024, 32(3): 14-20.
LÜ Jingze, DAI Ning, HU Xudong, et al. Design of electrostatic charge-induced yarn breakage sensors[J]. Advanced Textile Technology, 2024, 32(3): 14-20.
[38] 朱明玲, 王直杰, 郑丽霞. 改进的小波变换在罗拉故障诊断中的应用[J]. 自动化仪表, 2011, 32(3): 36-38.
ZHU Mingling, WANG Zhijie, ZHENG Lixia. Application of improved wavelet transform in the roller fault diagnosis[J]. Process Automation Instrumentation, 2011, 32(3): 36-38.
[39] 侯平智, 唐飞平, 吴锋. 基于SVM算法的环锭纺纱机钢丝圈故障诊断[J]. 杭州电子科技大学学报, 2017, 37(4): 47-52.
HOU Pingzhi, TANG Feiping, WU Feng. Fault diagnosis of ring spinning frame based on SVM algorithm[J]. Journal of Hangzhou Dianzi University, 2017, 37(4): 47-52.
[40] 陈宇航, 李正平, 肖雷. 基于FFT-1D-CNN的细纱机罗拉轴承故障诊断[J]. 棉纺织技术, 2023, 51(1): 16-21.
CHEN Yuhang, LI Zhengping, XIAO Lei. Fault diagnosis of roller bearing in spinning frame based on FFT-1D-CNN[J]. Cotton Textile Technology, 2023, 51(1): 16-21.
[41] 陈京威, 罗维平. PHM技术在纺织机械设备管理中的应用[J]. 武汉纺织大学学报, 2022, 35(1): 10-14.
CHEN Jingwei, LUO Weiping. The application of PHM technology in textile machinery and equipment management[J]. Journal of Wuhan Textile University, 2022, 35(1): 10-14.
[42] GHAHARI F, MALEKGHAINI N, EBRAHIMIAN H, et al. Bridge digital twinning using an output-only Bayesian model updating method and recorded seismic measurements [J]. Sensors (Basel, Switzerland), 2022, 22(3): 1278.
[43] LI T, CHEN J, YUAN S, et al. Particle filter-based fatigue damage prognosis by fusing multiple degradation models [J]. Structural Health Monitoring, 2024: 14759217231216697.
[44] HUANG X, XIE T, LUO S, et al. Incremental learning with multi-fidelity information fusion for digital twin-driven bearing fault diagnosis [J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108212.
[45] WU T, YANG F, FAROOQ U, et al. An online learning method for constructing self-update digital twin model of power transformer temperature prediction [J]. Applied Thermal Engineering, 2024, 237: 121728.
[46] PAN Y, BRAUN A, BRILAKIS I, et al. Enriching geometric digital twins of buildings with small objects by fusing laser scanning and AI-based image recognition [J]. Automation in Construction, 2022, 140: 104375.
[47] 韩江洪, 杜兆芳, 刘小平, 等. 基于混合Petri网建模的纺织生产调度研究[J]. 系统仿真学报, 2008, 20(24): 6839-6842.
HAN Jianghong, DU Zhaofang, LIU Xiaoping, et al. Research on textile production scheduling problems based on hybrid petri net[J]. Journal of System Simulation, 2008, 20(24): 6839-6842.
[48] WANG J, FENG G H, YU W D. Research in Virtual Cotton Spinning Process based on CAPN[C]// proceedings of the IMECS 2015, Hongkong, 2015: 248-252.
[49] 孟亚勇, 曹继鹏, 韩贤国, 等. 有限元分析在纺纱领域的应用研究进展[J]. 毛纺科技, 2022, 50(7): 113-120.
MENG Yayong, CAO Jipeng, HAN Xianguo, et al. Research and development progress in the application of finite element analysis in spinning[J]. Wool Textile Journal, 2022, 50(7): 113-120.
[50] 钱成, 刘燕卿, 刘新金, 等. 四罗拉集聚纺纱系统纤维运动数值模拟与分析[J]. 纺织学报, 2020, 41(3): 39-44.
QIAN Cheng, LIU Yanqing, LIU Xinjin, et al. Simulation and analysis of trajectory of fiber in a four-roller compact spinning system[J]. Journal of Textile Research, 2020, 41(3): 39-44.
[51] 肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探, 2022, 61(2): 205-212.
XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum, 2022, 61(2): 205-212.
[52] YIN Y, ZHENG P, LI C, et al. A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation [J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102515.
[53] SCHEFFER S, MARTINETTI A, DAMGRAVE R G, et al. Supporting maintenance operators using augmented reality decision-making: visualize, guide, decide & track [J]. Procedia CIRP, 2023, 119: 782-787.
[54] ESCHEN H, KÖTTER T, RODECK R, et al. Augmented and virtual reality for inspection and maintenance processes in the aviation industry [J]. Procedia Manufacturing, 2018, 19: 156-163.
[55] ESWARAN M, RAJU BAHUBALENDRUNI M V A. Augmented reality aided object mapping for worker assistance/training in an industrial assembly context: Exploration of affordance with existing guidance techniques [J]. Computers & Industrial Engineering, 2023, 185: 109663.
[56] 王宇希, 张凤军, 刘越. 增强现实技术研究现状及发展趋势[J]. 科技导报, 2018, 36(10): 75-83.
WANG Yuxi, ZHANG Fengjun, LIU Yue. Augmented reality technology[J]. Science & Technology Review, 2018, 36(10): 75-83.
[57] 崔月敏, 程隆棣, 和杉杉, 等. 基于循环迭代法的牵伸区纤维运动仿真模拟[J]. 纺织学报, 2023, 44(2):76-82
CUI Yuemin, CHENG Longdi, HE Shanshan, et al. Simulation of fiber motion in drafting zone based on cyclic iterative method[J]. Journal of Textile Research, 2023, 44(2): 76-82.
[58] 邱海飞. 气流纺转杯纺纱通道三维内流场数值模拟[J]. 丝绸, 2021, 58(4): 36-42.
QIU Haifei. Numerical simulation of three-dimensional internal flow field in the spinning channel on rotor spinning unit[J]. Journal of Silk, 2021, 58(4): 36-42.
|