现代纺织技术 ›› 2025, Vol. 33 ›› Issue (03): 16-26.
出版日期:
2025-03-10
网络出版日期:
2025-03-20
Published:
2025-03-10
Online:
2025-03-20
摘要: 剪切变硬胶(SSG)复合材料因其应变率敏感和剪切硬化特性而备受瞩目。综合评述了SSG的研究进展,包括其合成技术、结构特性和材料改性,特别强调了添加功能性颗粒和创新复合结构设计可以提高SSG的稳定性和抗冲击性,还能有效改善SSG的冷流问题。此外,还探讨了SSG的复合技术、力学行为、功能化改进及其在实际应用中的新进展,并指出了当前研究面临的挑战,同时对其在智能抗冲击材料领域的未来发展潜力进行了展望,凸显了SSG在该领域的重要科学和应用价值。
中图分类号:
杨丹, 刘圣东, 常浩, 姚高政, 张为田. 智能剪切变硬胶复合材料的应用进展[J]. 现代纺织技术, 2025, 33(03): 16-26.
YANG Dan, LIU Shengdong, CHANG Hao, YAO Gaozheng, ZHANG Weitian. Progress in application of intelligent shear stiffening gel composites[J]. Advanced Textile Technology, 2025, 33(03): 16-26.
[1]宗昊, 魏汝斌, 甄建军, 等. 剪切增稠胶/碳酸钙复合材料的制备及其抗冲击性能研究[J]. 化工新型材料, 2021, 49(3): 99-103. ZONG Hao, WEI Rubin, ZHEN Jianjun, et al. Preparation and impact resistance of STG/CaCO3 composite[J]. New Chemical Materials,2021, 49(3): 99-103. [2]LI Z, LI Y, WANG Z, et al. 3D-printable and multifunctional conductive nanocomposite with tunable mechanics inspired by sesame candy[J]. Nano Energy, 2023, 108: 108166. [3]陈潜, 何倩云, 刘梅, 等. 剪切增稠液的力学性能与机理[J]. 固体力学学报, 2016, 37(6): 518-537. CHEN Qian, HE Qianyun, LIU Mei, et al. Mechanical properties and mechanism of shear thickening fluid[J]. Chinese Journal of Solid Mechanics, 2016, 37(6): 518-537. [4]刘晨阳, 李峰, 翟哲. 聚硼硅氧烷的合成及其流变性能[J]. 材料工程, 2022, 50(6): 164-169. LIU Chenyang, LI Feng, ZHAI Zhe. Synthesis and rheological property of polyborosiloxanes[J]. Journal of Materials Engineering, 2022, 50(6):164-169. [5]刘甜甜, 许文飞, 高晓琰. 作战靴关键部位支撑防护材料应用研究[J]. 皮革科学与工程, 2024, 34(4): 88-93. LIU Tiantian, XU Wenfei, GAO Xiaoyan. Research on the application of supporting protective materials for key parts of combat boots[J]. Leather Science and Engineering, 2024, 34(4): 88-93. [6]HAI T, ALHOMAYANI F M, SHARMA K. Dynamic impact and tensile strength characteristics of novel shear thickening fluid (STF)-treated fabric and modeling tensile strength using artificial intelligence[J]. Journal of Molecular Liquids, 2023, 387: 122592. [7]徐刚. 航空硅橡胶材料研究及应用进展[J]. 科技创新与应用, 2017(5): 48. XU Gang. Research and Application progress of aviation silicone rubber materials[J]. Technological Innovation and Application, 2017(5):48. [8]李旭峰, 洪夕佳, 许成章, 等. 聚硼硅氧烷的制备及非键络合作用[J]. 高分子材料科学与工程, 2014, 30(8): 22-26. LI Xufeng, HONG Xijia, XU Chengzhang, et al. Preparation of polyborosiloxane and non-bonding crosslink interaction[J]. Polymer Materials Science & Engineering, 2014, 30(8): 22-26. [9]SORARU G D, BABONNEAU F, GERVAIS C, et al. Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid[J]. Journal of Sol-Gel Science and Technology, 2000, 18(1): 11-19. [10]DEVAPAL D, PACKIRISAMY S, SREEJITH K J, et al. Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20(4): 666-674. [11]GRGAS D, RUKAVINA M, BEŠLO D, et al. The bacterial degradation of lignin: a review[J]. Water, 2023, 15(7): 1272. [12]ANDRIANOV K A, ERMAKOVA M V, OSTAPENKO O K. Hydrolytic stability of polyboroorganosiloxanes[J]. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1968, 17(9): 1913-1916. [13]MOSURKAL R, KIRBY R, MULLER W S, et al. Simple green synthesis of polyborosiloxanes as environmentally-safe, non-halogenated flame retardant polymers[J]. Green Chemistry, 2011, 13(3): 659-665. [14]LIU F, LIN Y Y, YANG X, et al. Study of hydrolysis behaviour of polyborosiloxane[J]. Polymer, 2023, 278: 126005. [15]陈志远, 王萍, 李深, 等. 新型剪切增稠胶的合成及其流变性能研究[J]. 化工新型材料, 2023, 51(6): 156-161. CHEN Zhiyuan, WANG Ping, LI Shen, et al. Synthesis and rheological properties of a new shear thickening adhesive[J]. New Chemical Materials, 2023, 51(6): 156-156-161. [16]林欢, 石启亮, 蔡利海, 等. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(S1): 549-554. LIN Huan, SHI Qiliang, CAI Lihai, et al. Study on influencing factors of preparation of PBS-STG and its rheological properties at different temperatures[J]. Materials Reports, 2022, 36(S1): 549-554. [17]YANG J, WANG X, HAN C, et al. Synthesis and inorganic conversion of polyborodiphenylsiloxane[J]. Ceramics International, 2021, 47(3): 3329-3336. [18]李恭铭, 孙德群. 分子内直接引入含氟基团以及18F-标记方法研究进展[J]. 有机化学, 2016, 36(8): 1715-1740. LI Gongming, SUN Dequn. Recent advances of direct incorporation of fluorine-containing groups and 18F-labeling methods[J]. Chinese Journal of Organic Chemistry, 2016, 36(8): 1715-1740. [19]袁芳, 王胜, 桑敏, 等. 磁性剪切增稠复合材料的制备及其磁力耦合特性研究[J]. 中国科学(物理学、力学、天文学), 2018, 48(9): 199-208. YUAN Fang, WANG Sheng, SANG Min, et al. Preparation of dual-stimuli-responsive shear stiffening polymer composite and study on its mechanic-magnetic coupling performance[J]. Scientia Sinica Physica, 2018, 48(9): 199-208. [20]ZENG J, ZHU H, JIANG S, et al. A cost-effective purification strategy of ultra-long AgNWs for enhancing stability and durability of AgNWs/PU sensor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 696: 134329. [21]CURK T, DOBNIKAR J, FRENKEL D. Rational design of molecularly imprinted polymers[J]. Soft Matter, 2016, 12(1): 35-44. [22]王肃, 何旭, 李庆业, 等. 基于聚硼硅氧烷/碳纳米管复合材料的柔性摩擦纳米发电机的构建及在自供电系统中的应用[J]. 高分子材料科学与工程, 2020, 36(11): 152-158. WANG Su, HE Xu, LI Qingye, et al. Fabrication of the flexible triboelectric nanogenerator based on polyborossiloxane/carbon nanotube composites for self-powered electronic systems[J]. Polymer Materials Science & Engineering, 2020, 36(11): 152-158. [23]汪伯潮, 李颜, 逄浩明, 等. 各向同性磁流变弹性体磁相关非线性动态力学行为的本构模型(英文)[J]. 中国科学技术大学学报, 2024, 54(1): 58-70. WANG Bochao, LI Yan, PANG Haoming, et al. Constitutive modeling of the magnetic-dependent nonlinear dynamic behavior of isotropic magnetorheological elastomers[J]. Journal of the China University of Science and Technology, 2024, 54(1):58-70. [24]ZHANG Z, LIN X, LIN J, et al. Cellulose supported and strengthened shear stiffening gel with enhanced impact-resistant performance[J]. Chemical Engineering Journal, 2023, 473: 145435. [25]张永春, 孟晓佳, 李爱元. 纳米材料增强植物纤维复合材料研究进展[J]. 化工新型材料, 2024: 1-9. ZHANG Yongchun, MENG Xiaojia, LI Aiyuan. Research progress of plant fiber composites reinforced by nanomaterials[J]. New Chemical Materials, 2024:1-9. [26]OZTEMUR J, SEZGIN H, YALCIN-ENIS I. Design of an impact absorbing green composite[J]. Materials Today: Proceedings, 2022, 60: 97-99. [27]周文君, 费阳, 张敬礼, 等. 聚硼硅氧烷阻燃木塑复合材料的研究[J]. 塑料工业, 2015, 43(8): 99-103. ZHOU Wenjun, FEI Yang, ZHANG Jingli, et al. Study on polyborosiloxane flame retardant wood plastic composites[J]. China Plastics Industry, 2015, 43(8): 99-103. [28]WU H, LUO X, WANG C, et al. 3D printing of robust, self-healing, and highly sensitive pressure sensor based on an interpenetrating polymer network elastomer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685: 133248. [29]刘芳, 林园园, 焦传佳, 等. 聚硼硅氧烷的结构对其苯乙烯类热塑性弹性体共混物冲击性能影响的分析[J]. 分析化学, 2023, 51(12): 1993-2002. LIU Fang, LIN Yuanyuan, JIAO Chuanjia, et al. Analysis of influence of structure of polyborosiloxane on impact properties of its styrene-based thermoplastic elastomer blends[J]. Chinese Journal of Analytical Chemistry, 2023, 51(12): 1993-2002. [30]LIU S, LIU S, WANG Q, et al. Design and synthesis of robust superhydrophobic coating based on epoxy resin and polydimethylsiloxane interpenetrated polymer network[J]. Progress in Organic Coatings, 2023, 175: 107336. [31]王文慧, 王胜, 刘帅, 等. 增强抗冲击和热性能的功能防护复合材料(英文)[J]. 中国科学技术大学学报, 2023, 53(4): 49-59. WANG Wenhui, WANG Sheng, LIU Shuai, et al. Advanced functional safeguarding composites with enhancedanti-impact and excellent thermal properties[J]. Journal of the China University of Science and Technology, 2023, 53(4):49-59. [32]李苗苗, 吕全乾, 朱锦涛, 等. 基于聚硼硅氧烷的自愈合光子晶体弹性体[J]. 高分子学报, 2019, 50(3): 271-280. LI Miaomiao, LÜ Quanqian, ZHU Jintao, et al. Polyborosiloxane-based photonic elastomers with self-healing capability[J]. Acta Polymerica Sinica, 2019, 50(3): 271-280. [33]赵志峰, 陈香录, 王天奥, 等. 聚氨酯合成及应用研究进展[J]. 精细石油化工进展, 2024, 25(4): 31-35. ZHAO Zhifeng, CHEN Xianglu, WANG Tian'ao, et al. Progress in polyurethane synthesis and its application [J]. Progress of Fine Petrochemical Industry [J]. Progress of Fine Petrochemical Industry, 2024, 25(4):31-35 [34]LU W, ZHANG Q, QIN F, et al. Hierarchical network structural composites for extraordinary energy dissipation inspired by the cat paw[J]. Applied Materials Today, 2021, 25: 101222. [35]杜元开, 董姗, 柯雪, 等. 高分子导热复合材料结构设计及性能研究进展[J]. 化学通报, 2023, 86(9): 1026-1034. DU Yuankai, DONG Shan, KE Xue, et al. Research progress in structural design and properties of polymer thermal conductive composites[J]. Chemistry, 2023, 86(9): 1026-1034. [36]NADERI M, JI M, LIYANAGE S, et al. Experimental and numerical analysis of wrinkles influence on damage mechanisms and strength of L-Shape cross-ply composite beams[J]. Composites Science and Technology, 2022, 223: 109420. [37]MA D, WANG C, XU W, et al. Shock wave mitigation and impact resistance response of kevlar fabric with novel shear-stiffening gel core[J]. Journal of Materials Research and Technology, 2023, 27:839-851. [38]周文君, 王雪芹, 何伟壮. PC/ABS/聚硼硅氧烷阻燃合金的性能[J]. 化工进展, 2016, 35(3): 861-865. ZHOU Wenjun, WANG Xueqin, HE Weizhuang. Properties of flame retarded PC/ABS/polyborosiloxane[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 861-865. [39]陈倩, 李峰, 高双全. 聚硼硅氧烷基黏滞阻尼器的力学性能研究[J]. 振动与冲击, 2021, 40(22): 203-208. CHEN Qian, LI Feng, GAO Shuangquan. Mechanical properties of a polyborosiloxane-based viscous damper[J]. Journal of Vibration and Shock, 2021, 40(22):203-208. [40]LIU G, WANG C, XIA T. Shielding sensitive medical imaging data[J]. Nature Machine Intelligence, 2024, 6: 742-743. [41]AGRAWAL R, KUMAR A, MOHAMMED M K A, et al. Biomaterial types, properties, medical applications, and other factors: a recent review[J]. Journal of Zhejiang University: Science A, 2023, 24(11): 1027-1042. [42]RAMAKRISHNA S, MAYER J, WINTERMANTEL E, et al. Biomedical applications of polymer-composite materials: a review[J]. Composites Science and Technology, 2001, 61(9): 1189-1224. [43]马潮禾, 刘鹏, 陈婧, 等. 基于纤维混杂的防弹防刺结构设计与优化[J/OL]. 兵工学报, 2024: 1-9..http://kns.cnki.net/kcms/detail/11.2176.TJ.20240320.1128.002.html. MA Chaohe, LIU Peng, CHEN Jing, et al. Design and Optimization of bulletproof and stab-resistant structure based on mixed fabrics[J/O]. Acta Armamentarii, 2024: 1-9. http://kns.cnki.net/kcms/detail/11.2176.TJ.20240320.1128.002.html. [44]ZHOU J, ZHANG J, SANG M, et al. Advanced functional Kevlar composite with excellent mechanical properties for thermal management and intelligent safeguarding[J]. Chemical Engineering Journal, 2022, 428: 131878. [45]LIU S, WANG S, SANG M, et al. Nacre-mimetic hierarchical architecture in polyborosiloxane composites for synergistically enhanced impact resistance and ultra-efficient electromagnetic interference shielding[J]. ACS Nano, 2022, 16(11): 19067-19086. [46]张琳娇, 华俊森, 马超, 等. 聚合物先驱体陶瓷极端环境传感器的研究进展[J]. 硅酸盐学报, 2024, 52(9): 2815-2826. ZHANG Linjiao, HUA Junsen, MA Chao, et al. Research progress in polymer-derived ceramic sensors for extreme environment sensor[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2815-2826. [47]吴沐韩, 王凌云, 钟长志, 等. 压阻式压力传感器芯片悬空型无引线封装结构的设计与实验[J]. 微纳电子技术, 2024, 61(9): 156-167. WU Muhan, WANG Lingyun, ZHONG Changzhi, et al. Design and experiments of suspended leadless packaging structure for piezoresistive pressure sensor chips[J]. Micronanoelectronic Technology, 2024, 61(9): 156-167. [48]张抑扬, 罗胜年. 含能材料的新型X射线和光学诊断学研究进展[J]. Engineering, 2020, 6(9): 992. ZHANG Yiyang, LUO Shengnian. Novel X-ray and optical diagnostics for studying energetic materials: a review[J]. Engineering, 2020, 6(9): 992. [49]ZHANG H, LI L, LIU X L, et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent[J]. ACS Nano, 2017, 11(4): 3614-3631. [50]周鸿, 郭朝阳, 宗路航, 等. 剪切增稠液及阻尼器性能研究[J]. 振动与冲击, 2013, 32(18): 15-20. ZHOU Hong, GUO Chaoyang, ZONG Luhang, et al. Performance of shear thickening fluid and a damper as its application[J]. Journal of Vibration and Shock, 2013, 32(18): 15-20. [51]宗路航, 陈现敏, 郭朝阳, 等. 磁流变阻尼器半主动控制方法的实验研究[J]. 实验力学, 2010, 25(2): 143-150. ZONG Luhang, CHEN Xianmin, GUO Chaoyang, et al. Experimental study on the semi-active control strategies of magnetorheological damper[J]. Journal of Experimental Mechanics, 2010, 25(2): 143-150. [52]阮晓辉, 边会婷, 赵军, 等. 用于提高剪力墙性能的大尺度磁流变阻尼器的力学性能研究[J]. 实验力学, 2020, 35(5): 759-770. RUAN Xiaohui, BIAN Huiting, ZHAO Jun, et al. Research on mechanical properties of large-scale magnetorheological damper for improving the performance of shear wall[J]. Journal of Experimental Mechanics, 2020, 35(5): 759-770. [53]PALLARES R M, SU X, LIM S H, et al. Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects[J]. Journal of Materials Chemistry C, 2016, 4(1): 53-61. [54] HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 2021, 597(7874): 57-63. [55]王释慧, 周永娟, 熊加斌. 摩擦纳米发电机MOFs材料研究进展[J]. 化学教育(中英文), 2024, 45(8): 16-23. WANG Shihui, ZHOU Yongjuan, XIONG Jiabin. MOFs materials for triboelectrie nanogenerators[J]. Chemical Education[J]. Chinese Journal of Chemical Education, 2024, 45(8):16-23. [56]WANG S, DING L, WANG Y, et al. Multifunctional triboelectric nanogenerator towards impact energy harvesting and safeguards[J]. Nano Energy, 2019, 59: 434-442. [57]蒋明炜, 王辉, 王家坤, 等. 基于液滴式发电效率的研究[J]. 大学物理实验, 2024, 37(4): 18-23. JIANG Mingwei, WANG Hui, WANG Jiakun, et al. Investigation on the efficiency of droplet-based electricity generation[J]. Physical Experiment of College, 2024, 37(4): 18-23. |
[1] | 王汜辛, 闫永杰, 倪庆清. 碳纤维织物复合材料裂纹扩展特性的介观尺度有限元分析#br#[J]. 现代纺织技术, 2025, 33(02): 49-58. |
[2] | 李炳, 陆雨涛, 张栎霞, 张祖贤, 高榕蔓, 熊杰, 郭凤云. 可控CA/SF多孔纤维膜的制备及其液体分离性能[J]. 现代纺织技术, 2025, 33(01): 102-109. |
[3] | 师琅, 姜茸凡. 涂层层数对镍粉/石墨基复合材料介电性能和吸波性能的影响[J]. 现代纺织技术, 2024, 32(3): 38-44. |
[4] | 陈波, 张昇雨, 杨兴林, 张俊苗. 基于细观结构的径向轴纱三维五向圆形编织复合材料的刚度预测[J]. 现代纺织技术, 2024, 32(2): 83-95. |
[5] | 钟之豪, 刘 帅, 王首浩, 戴宏波. 基于PET-CNT自感应复合纤网插层的玻璃纤维增强复合材料层间增韧-结构监测一体化响应[J]. 现代纺织技术, 2024, 32(12): 29-37. |
[6] | 苏妮妮, 吴莹, 田伟, 祝成炎. 脱胶处理对单向蚕丝/PCL复合材料性能的影响[J]. 现代纺织技术, 2024, 32(11): 81-88. |
[7] | 王震, 丁颖, 汪易平, 徐丽慧, 潘虹. UiO-66@GO复合材料制备及其光催化性能[J]. 现代纺织技术, 2024, 32(10): 68-77. |
[8] | 邵烨华, 高召阳, 王龙飞, 田伟, 戚栋明, 严小飞. 聚乳酸纳米填料增强复合材料的应用研究进展[J]. 现代纺织技术, 2024, 32(1): 130-139. |
[9] | 汪勇峰, 蒋培清, 张波, 蔡俊东, 张华鹏. 背板层间粘结性能对SiC/UHMWPE复合装甲防弹性能影响的数值分析[J]. 现代纺织技术, 2023, 31(5): 1-11. |
[10] | 骆宣耀, 韦粤海, 马雷雷, 田伟, 祝成炎. 硅烷偶联剂改性对玄武岩纤维增强乙烯基酯树脂复合材料力学性能的影响[J]. 现代纺织技术, 2023, 31(4): 103-110. |
[11] | 王娜娜, 黄李茜, 徐进云, 周存. 碳纤维耐高温型上浆剂的研究进展[J]. 现代纺织技术, 2023, 31(3): 237-250. |
[12] | 朱丹, 张青菊, 刘胜凯. 三维编织和角联锁复合材料的高速冲击响应[J]. 现代纺织技术, 2023, 31(2): 101-. |
[13] | 杨海贞, 马闯, 魏肃桀, 周泽林, 田征坤. 静电纺丝碳纳米管基复合材料在传感器中的应用研究进展[J]. 现代纺织技术, 2023, 31(2): 256-. |
[14] | 芮珂, 何佳臻. 三维间隔织物隔热性能的研究进展[J]. 现代纺织技术, 2023, 31(1): 259-268. |
[15] | 郑茜仁, 邵灵达, 金肖克, 祝成炎, 田伟. 热压成型工艺对竹纤维/PLA复合材料力学性能的影响[J]. 现代纺织技术, 2022, 30(6): 73-79. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||