[1]柯勤飞, 靳向煜. 非织造学[M]. 3版.上海:东华大学出版社, 2016:295.
KE Qinfei, JIN Xiangyu. Nonwovens[M]. 3rd ed. Shanghai: Donghua University Press, 2016: 295.
[2]HAO X, ZENG Y. A review on the studies of air flow field and fiber formation process during melt blowing[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11624-11637.
[3]DRABEK J, ZATLOUKAL M. Meltblown technology for production of polymeric microfibers/nanofibers: a review[J]. Physics of Fluids, 2019, 31(9): 091301.
[4]李佳馨,钱晓明,朵永超,等.改善超纤革用非织造布力学性能的研究进展[J].皮革科学与工程,2024, 34(3): 45-50.
LI Jiaxin, QIAN Xiaoming, DUO Yongchao, et al. Research progress on improving mechanical properties of nonwovens for superfiber leather[J]. Leather Science and Engineering, 2024, 34(3): 45-50.
[5]孟庆兴.熔喷非织造技术的发展与应用现状[J].聚酯工业, 2020, 33(3):16-19.
MENG Qingxing. Development and application of melt-blown nonwoven technology[J]. Polyester Industry, 2020, 33(3): 16-19.
[6]UYTTENDAELE M A J, SHAMBAUGH R L. Melt blowing: general equation development and experimental verification[J]. AIChE Journal, 1990, 36(2): 175-186.
[7]CHEN T, HUANG X. Modeling polymer air drawing in the melt blowing nonwoven process[J]. Textile Research Journal, 2003, 73(7): 651-654.
[8]SUN Y, ZENG Y, WANG X. Three-dimensional model of whipping motion in the processing of microfibers[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 1099-1109.
[9]SINHA-RAY S, YARIN A L, POURDEYHIMI B. Meltblowing: I-basic physical mechanisms and threadline model[J]. Journal of Applied Physics, 2010, 108(3): 034912.
[10]孙亚峰. 微纳米纤维纺丝拉伸机理的研究[D]. 上海:东华大学, 2011:97-122.
SUN Yafeng. Study on spinning and stretching mechanism of micro-nano fibers[D]. Shanghai: Donghua University, 2011: 97-122.
[11]JIA J, XIE S, ZHANG C. Airflow, fiber dynamic whipping, and final fiber diameter in flush sharp-die melt blowing with different air-slot widths[J]. ACS Omega, 2021, 6(44): 30012-30018.
[12]WANG Y, WANG X. Investigation on a new annular melt-blowing die using numerical simulation[J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4597-4605.
[13]ZHU B, XIE S, HAN W, et al. Swirling diffused air flow and its effect on helical fiber motion in swirl-die melt blowing[J]. Fibers and Polymers, 2021, 22(6): 1594-1600.
[14]XU H, ZHOU Z, LIU J, et al. Preliminary study of the effect of secondary airflow on fiber attenuation during melt blowing[J]. Fibers and Polymers, 2022, 23(11): 3039-3045.
[15]XIE S, ZENG Y. Turbulent air flow field and fiber whipping motion in the melt blowing process: experimental study[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5346-5352.
[16]XIE S, HAN W, JIANG G, et al. Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials[J]. Journal of Materials Science, 2018, 53(9): 6991-7003.
[17]WANG Y, JIANG F, NING W, et al. Investigation on the airflow fields of new melt-blown dies with rectangular jets[J]. Fibers and Polymers, 2022, 23(10): 2732-2739.
[18]XIE S, HAN W, XU X, et al. Lateral diffusion of a free air jet in slot-die melt blowing for microfiber whipping[J]. Polymers, 2019, 11(5): 788.
[19]肖志祥,罗堃宇,刘健.宽速域RANS-LES混合方法的发展及应用[J].空气动力学学报, 2017, 35(3): 338-353.
XIAO Zhixiang, LUO Kunyu, LIU Jian. Developments and applications of hybrid RANS-LES methods for wide-speed-range flows[J]. Acta Aerodynamica Sinica, 2017, 35(3): 338-353.
[20]杜若凡,阎超,韩政,等.DDES延迟函数在超声速底部流动中的性能分析[J].北京航空航天大学学报, 2017, 43(8): 1585-1593.
DU Ruofan, YAN Chao, HAN Zheng, et al. Performance of delayed functions in DDES for supersonic base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1585-1593.
[21]XIE S, JIANG G, WU X, et al. Air recirculation and its effect on microfiber spinning in blunt-die melt blowing[J]. Fibers and Polymers, 2021, 22(3): 703-710.
[22]XIE S, ZENG Y. Online measurement of fiber whipping in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2116-2122.
|