[1]ATILHAN S, PARK S, EL-HALWAGI M M, et al. Green hydrogen as an alternative fuel for the shipping industry[J]. Current Opinion in Chemical Engineering, 2021, 31: 100668.
[2]李军, 薄柯, 黄强华, 等. 高压氢气储运移动式压力容器发展趋势与挑战[J]. 太阳能学报, 2022, 43(3): 20-26.
LI Jun, BO Ke, HUANG Qianghua, et al. Development trend and challenges of high pressure hydrogen transportable pressure vessel[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 20-26.
[3]李前. 车用高压储氢气瓶法规标准研究[J]. 石油和化工设备, 2018, 21(8): 46-48.
LI Qian. Research on technology standard of new energy hydrogen storage cylinders[J]. Petro & Chemical Equipment, 2018, 21(8): 46-48.
[4]惠虎, 柏慧, 黄淞, 等. 纤维缠绕复合材料压力容器的研究现状[J]. 压力容器, 2021, 38(4): 53-63.
HUI Hu, BAI Hui, HUANG Song, et al. Research on fiber composites overwrapped pressure vessels[J]. Pressure Vessel Technology, 2021, 38(4): 53-63.
[5]AZEEM M, YA H H, ALAM M A, et al. Application of filament winding technology in composite pressure vessels and challenges: A review[J]. Journal of Energy Storage, 2022, 49: 103468.
[6]HU Z Y, CHEN M H, ZU L, et al. Investigation on failure behaviors of 70 MPa Type IV carbon fiber overwound hydrogen storage vessels[J]. Composite Structures, 2021, 259: 113387.
[7]陈汝训. 纤维缠绕壳体设计的网格分析方法[J]. 固体火箭技术, 2003, 26(1): 30-32.
CHEN Ruxun. Netting analysis method for the filament-wound case design[J]. Journal of Solid Rocket Technology, 2003, 26(1): 30-32.
[8]陈汝训. 纤维缠绕壳体的应力平衡系数和圆筒缠绕角[J]. 固体火箭技术, 2009, 32(6): 677-679.
CHEN Ruxun. Stress equilibrium factor and the cylinder wound angle of the filament-wound case[J]. Journal of Solid Rocket Technology, 2009, 32(6): 677-699.
[9]MADHAVI M. Design and analysis of filament wound composite pressure vessel with integrated-end domes[J]. Defence Science Journal, 2009, 59(1): 73-81.
[10]HOSSAIN R, CAREY J P, MERTINY P. Framework for a combined netting analysis and Tsai-Wu-based design approach for braided and filament-wound composites[J]. Journal of Pressure Vessel Technology, 2013, 135(3): 031204.
[11]DINH V H, TRAN N T, VU T L, et al. Design of planar wound composite vessel based on preventing slippage tendency of fibers[J]. Composite Structures, 2020, 254(3): 112854.
[12]ZHANG Q, XU H, JIA X L, et al. Design of a 70 MPa type IV hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures, 2020, 236: 111915.
[13]PARK G, JANG H, KIM C. Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4)[J]. Journal of Mechanical Science and Technology, 2021, 35(8): 3507-3517.
[14]于斌, 张海, 赵积鹏, 等. 卫星用复合材料压力容器力学特性研究[J]. 计算力学学报, 2021, 38(2): 264-270.
YU Bin, ZHANG Hai, ZHAO Jipeng, et al. Mechanical characteristic study of composite overwrapped pressure vessel for satellite application[J]. Chinese Journal of Computational Mechanics, 2021, 38(2): 264-270.
[15]DALIBOR I H, LISBOA T V, MARCZAK R J, et al. Optimum slippage dependent, non-geodesic fiber path determination for a filament wound composite nozzle[J]. European Journal of Mechanics A-Solids, 2020, 82: 103994.
[16]刘培启, 杨帆, 黄强华, 等. T700碳纤维增强树脂复合材料气瓶封头非测地线缠绕强度[J]. 复合材料学报, 2019, 36(12): 2772-2778.
LIU Peiqi, YANG Fan, HUANG Qianghua, et al. Non-geod/etic winding strength of T700 carbon fiber reinforced resin composite cylinder head[J]. Acta Materiae Compositae Sinica, 2019, 36 (12): 2772-2778.
[17]JIAO W C, NIU Y, HAO L F, et al. Optimal design of lightweight composite pressure vessel by using artificial immune algorithm[J]. Polymers & Polymer Composites, 2014, 22(3): 323-328.
[18]ZU L, ZHANG D H, XU Y Q, et al. Integral design and simulation of composite toroidal hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1027-1036.
[19]王荣, 何钦象, 祖磊. 纤维缠绕不等极孔椭球类容器的应力分析及优化[J]. 宇航材料工艺, 2014, 44(4): 25-30.
WANG Rong, HE Qinxiang, ZU Lei. Stress analysis and optimization for filament wound ellipsoidal pressure vessels with unequal polar openings[J]. Aerospace Materials & Technology, 2014, 44(4): 25-30.
[20]ZU L, ZHU W D, DONG H Y, et al. Application of variable slippage coefficients to the design of filament wound toroidal pressure vessels[J]. Composite Structures, 2017, 172: 339-344.
|