[1] ZAKERI M, MANSOORI H, SADEGHIAN M, et al. Impact response of fiber metal laminates based on aluminum and UHMWPE composite: Numerical simulation[J]. Thin-Walled Structures, 2022, 172: 108796.
[2] WILKINS M L, LANDINGHAM R L, HONODEL C A. Light-armor Program. Fifth Progress Report: UCR L-50980[R]. USA: Lawrence Livermore National Laboratory, 1971.
[3] JENA P K, RAMANJENEYULU K, SIVA KUMAR K, et al. Ballistic studies on layered structures[J]. Materials & Design, 2009, 30(6): 1922-1929.
[4] 王东哲,秦溶蔓,孙娜,等.陶瓷/纤维复合装甲抗弹丸侵彻性能的试验与数值模拟研究[J].材料导报,2021,35(18):18216-18221.
WANG Dongzhe, QIN Rongman, SUN Na, et al. Experimental and numerical simulation study on anti-projectile penetration performance of ceramic/fiber composite armor[J]. Materials Reports, 2021, 35(18): 18216-18221.
[5] HU D A, ZHANG Y M, SHEN Z W, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International, 2017, 43(13): 10368-10376.
[6] 刘迪,肖依,江旭伟,等.SiC/UHMWPE复合装甲板抗侵彻性能的试验与数值模拟[J].上海大学学报(自然科学版),2020,26(2):234-243.
LIU Di, XIAO Yi, JIANG Xuwei, et al. Anti-penetration capability of SiC/UHMWPE composite armour plates through experimental and numerical simulation[J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(2): 234-243.
[7] SHEN Z W, HU D A, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures, 2019, 213: 209-219.
[8] ZAERA R, SÁNCHEZ-SÁEZ S, PÉREZ-CASTELLANOS J L, et al. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(8): 823-833.
[9] 孔晓鹏,蒋志刚,曾首义.陶瓷/铝合金复合装甲脱粘机理数值模拟[J].弹道学报,2011,23(1):58-62.
KONG Xiaopeng, JIANG Zhigang, ZENG Shouyi. Numerical simulation on debonding mechanism of ceramic/aluminum composite armors[J]. Journal of Ballistics, 2011, 23(1): 58-62.
[10] 申志强,蒋志刚,曾首义.陶瓷金属复合靶板工程模型及耗能分析[J].工程力学,2008,25(9):229-234.
SHEN Zhiqiang, JIANG Zhigang, ZENG Shouyi. An engineering model and energy dissipation analysis of ceramic/metal composite target[J]. Engineering Mechanics, 2008, 25(9): 229-234.
[11] KUMAR M, KUMAR P, BHADAURIA S S. Numerical simulation of delamination growth in fiber reinforced polymer laminates using cohesive zone modeling[J]. Mechanics of Advanced Materials and Structures, 2022, 29(2): 213-229.
[12] TARTAGLIONE A. Numerical simulation of adhesive joints under impact loading conditions[D]. Turin: Polytechnic University of Turin,2020.
[13] GEORGE G A. Implementation of the Johnson-Holmquist II (JH-2) Constitutive Model Into DYNA3D[R]. Weapons and Materials Research Directorate, ARL, 2002.
[14] LAHIRI S K, SHAW A, RAMACHANDRA L S. On performance of different material models in predicting response of ceramics under high velocity impact[J]. International Journal of Solids and Structures, 2019, 176/177: 96-107.
[15] JORDAN J B, NAITO C J, (GAMA) HAQUE B Z. Progressive damage modeling of plain weave E-glass/phenolic composites[J]. Composites Part B: Engineering, 2014, 61: 315-323.
[16] HAZZARD M K, TRASK R S, HEISSERER U, et al. Finite element modelling of Dyneema® composites: From quasi-static rates to ballistic impact[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 31-45.
[17] SCAZZOSI R, GIGLIO M, MANES A. Experimental and numerical investigation on the perforation resistance of double-layered metal shield under high-velocity impact of armor-piercing projectiles[J]. Materials, 2021, 14(3): 626.
[18] WANG C Z, CHEN A J, LI Z Q, et al. Experimental and numerical investigation on penetration of clay masonry by small high-speed projectile[J]. Defence Technology, 2021, 17(4): 1514-1530.
[19] O′ MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Indentation of polyethylene laminates by a flat-bottomed cylindrical punch[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 138-147.
[20] LIU B G, WADLEY H, DESHPANDE V. Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles[J]. International Journal of Solids and Structures, 2019, 178-179.
|