[1] 陈运能,杜群,翁毅.蔺草纤维研究的现状及其展望[J].浙江纺织服装职业技术学院学报,2009,8(3): 103-107.
CHEN Yunneng, DU Qun, WENG Yi. Present situation and prospect of the rush fiber research[J]. Journal of Zhejiang Fashion Institute of Technology, 2009, 8(3): 103-107.
[2] FU Z, ZHOU S, XIA L, et al. A highly efficient and stable solar energy-driven device using lignocellulosic biomass Juncus effusus for the recovery of ethanol-water mixture, Green Chemistry, 2022, 24(12):4812-4823.
[3] TANG W, FU C, XIA L, et al. A flexible and sensitive strain sensor with three-dimensional reticular structure using biomass Juncus effusus for monitoring human motions, Chemical Engineering Journal 2022, 438:135-146.
[4] 武晨浩, 李昆锋, 李肖华, 等. 二氧化硅气凝胶常压干燥工艺的研究进展[J]. 化工进展, 2022, 41(2): 837-847.
WU Chenhao, LI Kunfeng, LI Xiaohua, et al. Research progress on preparation of silica aerogels at ambient pressure drying[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 837-847.
[5] 赵洪凯, 邵凯, 刘威, 等. 纳米级增强体复合硅气凝胶的研究进展[J]. 无机盐工业, 2020, 52(4): 7-11.
ZHAO Hongkai, SHAO Kai, LIU Wei, et al. Research progress of nano-sized reinforced silica aerogel composites[J]. Inorganic Chemicals Industry, 2020, 52(4): 7-11.
[6] 姜小青. 二氧化硅气凝胶的研究进展[J]. 精细与专用化学品, 2020, 28(9): 46-50.
JIANG Xiaoqing. Research progress of silicon dioxide aerogel[J]. Fine and Specialty Chemicals, 2020, 28(9): 46-50.
[7] 刘朝辉. 纳米SiO2气凝胶的制备及保温隔热性应用研究进展[J]. 材料导报, 2018, 32(5): 788-795.
LIU Zhaohui. Preparation and application of Nano-Silica aerogels in thermal insulation: An Overview [J]. Materials Reports, 2018, 32(5): 788-795.
[8] 潘月磊, 程旭东, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2022, 42(1) 297-309.
PAN Yuelei, CHENG Xudong, YAN Mingyuan, et al. Silica aerogel and its application in the filed of thermal insulation[J]. Chemical Industry and Engineering Progress, 2022, 42(1): 297-309.
[9] 陆磊, 顾于珏, 吴源昊. SiO2气凝胶在建筑材料应用上的研究[J]. 砖瓦, 2020, 391(7): 83-85.
LU Lei, GU Yujue, WU Yuanhao. Research on the application of Silicon aerogel in construction materials[J]. Brick-tile, 2020, 391(7): 83-85.
[10] Fesmire E, Sass P. Aerogel insulation applications for liquid hydrogen launch vehicle tanks[J]. Cryogenics, 2008,48(5): 223-231.
[11] 贾伟韬, 张光磊, 李彦芳, 等. 纤维复合SiO2气凝胶的研究进展[J]. 硅酸盐通报, 2019, 38(7): 2118-2124.
JIA Weitao, ZHANG Guanglei, LI Yanfang, et al. Research progress of the fiber Composite SiO2 aerogel[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2118-2124.
[12] 田佳琦, 谭慧君, Sameera Shafi, 等. O2等离子体改性玻璃纤维增强SiO2气凝胶复合材料的制备及表征[J]. 复合材料科学与工程, 2020,318(7): 45-52.
TIAN Jiaqi, TAN Huijun, SAMEERA Shafi, et al. Preparation and characterization of silica aerogel composite reinforced by oxygen plasma modified glass fiber [J]. Science and Engineering of Composites Materials, 2020, 318(7): 45-52.
[13] 张明. 增强改性SiO2气凝胶复合材料的研究进展[J]. 复合材料学报, 2020, 37(11):2674-2683.
ZHANG Ming. Research progress of reinforced SiO2 aerogel composites[J]. Acta Materiae Compositae Silica, 2020, 37(11):2674-2683.
[14] 高文杰. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4):149-153.
GAO Wenjie. Preparation and characterization of fiber reinforced silica aerogel[J]. Materials Reports, 2019, 33(4):149-153.
[15] 崔军, 丁晴, 王佳庆, 等. 短切纤维改善SiO2气凝胶性能的研究进展[J]. 化工新型材料, 2021, 49(10):223-227.
CUI Jun, DING Qing, WANG Jiaqing, et al. Research progress on chopped fiber to improving property of silica aerogel[J]. New Chemical Materials, 2021, 49(10):223-227.
[16] 张怡, 葛欣国, 卢国建, 等. 硅酸铝纤维和玻璃纤维复合二氧化硅气凝胶材料的制备与性能[J]. 无机盐工业, 2020, 52(10):68-71.
ZHANG Yi, GE Xinguo, LU Guojian, et al. Preparation and properties of aluminum silicate fiber and glass fibers composite silica aerogel materials[J]. Inorganic Chemicals Industry, 2020, 52(10):68-71.
[17] 梁玉莹. 纤维改善SiO2气凝胶的力学和隔热性能研究进展[J]. 硅酸盐通报, 2017, 36(4):1216-1222.
LIANG Yuying. Advances in effect of fiber species on improving mechanical and thermal insulation properties of silica aerogel [J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4):1216-1222.
[18] 程凯, 吴明华, 倪华钢. SiO2气凝胶的制备及其在隔热涂层织物中的应用[J]. 印染助剂, 2021, 38(6):26-30.
CHENG Kai, WU Minghua, NI Huagang. Preparation of SiO2 aerogel and its application in thermal insulation coated fabrics [J]. Textile Auxiliaries, 2021, 38(6):26-30.
[19] SMIRNOVA I, SUTTIRUENGWONG S, ARLT W, et al. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems[J]. Journal of Non-Crystalline Solids, 2004, 350: 54-60.
[20] NAJAFI H, ZADHOUSH A, TALEBI Z, et al. Rezazadeh Tehrani, Influence of porosity and aspect ratio of nanoparticles on the interface modification of glass/epoxy composites[J]. Polymer Composites, 2018, 39(9) : 3073-3080.
[21] WANG Y, YANG Y, QU Y, et al. Selective removal of lignin with sodium chlorite to improve the quality and antioxidant activity of xylo-oligosaccharides from lignocellulosic biomass[J]. Bioresource Technology, 2021, 337: 125506.
[22] YANG X, SUN Y, SHI D, et al. Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite[J]. Materials Science and Engineering: A, 2011, 528(13-14): 4830-4836.
[23] HE S, HUANG Y, CHEN G, et al. Effect of heat treatment on hydrophobic silica aerogel[J]. Journal of hazard Materials, 2019, 362: 294-302.
[24] MORTEZ N, MAHINROOSTA M, ALLAHVERDIll A, et al. Preparation of monolithic amorphous silica aerogel through promising valorization of silicomanganese slag [J]. Journal of Non-Crystalline Solids, 2022, 586: 294-253.
[25] PAN N, HE S, GONG L, et al. Low thermal-conductivity and high thermal stable silica serogel based on MTMS/Water-glass coprecusor prepared by freeze drying[J]. Materials and Design, 2017, 113: 246-302.
[26] LI Z, GONG L, CHENG X, et al. Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior[J]. Materials & Design, 2016, 99: 349-355.
[27] BANANIFARD H, ASHJARI M, NIAZI Z, et al. Efficient reinforcement of wet gel by embedded polymer as newly approach for silica aerogel[J]. Polymers for Advanced Technologies, 2020, 31(12): 3174-3181.
[28] HUANG J, WANG X, GUO W, et al. Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022: 131.
[29] 付浩成,高文花,王斌,等.不同干燥方式对木质素纳米纤维素纤丝结晶指数以及热稳定性能的影响[J].造纸科学与技术,2019,38(5):1-6.
FU Haocheng, GAO Wenhua, WANG Bin, et al. The effect of drying method on the thermal properties and crystallinity index of dried lignocellulose nanofibrils[J]. Paper Science and Technology, 2019, 38(5):1-6.
[30] CHEN K, FENG Q, MA D, et al. Hydroxyl modification of silica aerogel: An effective adsorbent for cationic and anionic dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021: 616
[31] YAM B, NGUYEN P, THAI Q, et al. Recycling of magnesium waste into magnesium hydroxide aerogels[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):326-335.
[32] ZHAO F, LIU H, LI H, et al. Cogel strategy for the preparation of a "thorn"-like porous halloysite/gelatin composite aerogel with excellent mechanical properties and thermal insulation[J]. ACS Applied Materials Interfaces, 2022, 14(15): 17763-17773.
[33] YANG H, WANG Z, LIU Z, et al. Continuous, strong, porous silk firoin-based aerogel fibers toward textile thermal insulation[J]. Polymers. 2019, 11(11):1899.
[34] PU H, DING X, CHEN H, et al. Functional aerogels with sound absorption and thermal insulation derived from semi-liquefied waste bamboo and gelatin[J]. Environmental Technology & Innovation.2021, 24(6):101-109.
[35] YANG J, YU P, TANG L.S, et al. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion[J]. Nanoscale, 2017, 9(45): 17704-17709.
[36] ANGHEL E, PAVEL P, CONSTANTINESCU M, et al. Thermal Transfer Performance of a Spherical Encapsulated PEG 6000-Based Composite for Thermal Energy Storage[J]. Applied. Energy, 2017, 208, 1222−1231.
[37] ZHANG X, Li N, HU Z, et al. Direct fabrication of poly(p-phenylene terephthalamide) aerogel and its composites with great thermal insulation and infrared stealth[J]. Chemical Engineering Journal, 2020, 388,1385−1395.
[38] LYU J, LIU Z, WU X, et al. Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245.
|