[1] SONG M, TAN H A, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564.
[2] GALOS J, PATTARAKUNNAN K, BEST A S, et al. Energy storage structural composites with integrated lithium-ion batteries: A review[J]. Advanced Materials Technologies, 2021, 6(8): 2001059.
[3] CHOI S, WANG G X. Advanced lithium-ion batteries for practical applications: technology, development, and future perspectives[J]. Advanced Materials Technologies, 2018, 3(9): 1700376.
[4] OBAMA B. The irreversible momentum of clean energy[J]. Science, 2017, 355: 126-129.
[5] MENG C Z, MURALIDHARAN N, TEBLUM E, et al. Multifunctional structural ultrabattery composite[J]. Nano Letters, 2018, 18(12): 7761-7768.
[6] LI Y L, YU D D, LIN S, et al. Preparation of α-MnO2 nanorods/porous carbon cathode for aqueous zinc-ion batteries[J]. Acta Chimica Sinica, 2021, 79(2): 200-207.
[7] 周荣鑫,葛烨倩.碳纳米纤维负极材料制备及其电化学性能[J].现代纺织技术, 2022, 30(1): 41-46.
ZHOU Rongxin, GE Yeqian. Preparation and electrochemical performance of carbon nanofiber anode materials[J]. Advanced Textile Technology, 2022, 30(1): 41-46.
[8] MA L T, ZHI C Y. Zn electrode/electrolyte interfaces of Zn batteries: A mini review[J]. Electrochemistry Communications, 2021, 122: 106898.
[9] HAN C, LI W J, LIU H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries[J]. Nano Energy, 2020, 74: 104880.
[10] 赵浩阅,夏鑫.锡/碳纳米纤维负极材料的结构变化对其锂电电化学性能的影响[J].现代纺织技术, 2019, 27(4): 8-11.
ZHAO Haoyue, XIA Xin. Effect of structural change in Sn/C nanofiber anode material on electrochemical performance of lithium battery[J]. Advanced Textile Technology, 2019, 27(4): 8-11.
[11] 盛亚兰. 基于锰基正极材料的结构锌离子电池的制备与性能研究[D].长春:吉林大学, 2022.
SHENG Yalan. Preparation and Performance of Structural Zinc-ion Batteries Based on Manganese-based Cathode Materials[D]. Changchun: Jilin University, 2022.
[12]刘伟红, 林怡雪, 宋立新, 等.柔性碳基纳米纤维膜的研究进展[J].丝绸, 2020, 57(12): 1-8.
LIU Weihong, LIN Yixue, SONG Lixin, et al. Research progress of flexible carbon based nanofibers films[J]. Journal of Silk, 2020, 57(12): 1-8.
[13] LEI Z B, ZHANG J T, ZHAO X S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22(1): 153-160.
[14] SUN M, LAN B, LIN T, et al. Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities[J]. CrystEngComm, 2013, 15(35): 7010-7018.
[15] CHEN W, LI G D, PEI A, et al. A manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nature Energy, 2018, 3(5): 428-435.
[16] WANG J J, WANG J G, LIU H Y, et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(22): 13727-13735.
[17] XIA H, LAI M, LU L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(33): 6896-6902.
[18] ZHAO S, HAN B, ZHANG D T, et al. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries[J]. Journal of Materials Chemistry A, 2018, 6(14): 5733-5739.
[19] WANG D H, WANG L F, LIANG G J, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery[J]. ACS Applied Nano Materials, 2019, 13(9): 10643-10652.
[20] LI Y B, FU J, ZHONG C, et al. Recent advances in flexible zinc-based rechargeable batteries[J]. Advanced Energy Materials, 2019, 9(1): 1802605.
[21] YU P, ZENG Y X, ZHANG H Z, et al. Flexible Zn-ion batteries: recent progresses and challenges[J]. Small, 2019, 15(7): e1804760.
|