[1]VINCENT J F V. Stealing ideas from nature[M]//Pellegrino S.Deployable Structures. Vienna: Springer Vienna, 2001: 51-58.
[2]ROTH R R. The foundation of bionics[J]. Perspectives in Biology and Medicine, 1983, 26(2): 229-242.
[3]顾振亚, 田俊莹, 牛家嵘. 仿真与仿生纺织品[M]. 北京: 中国纺织出版社, 2007: 3-20.
GU Zhenya, TIAN Junying, NIU Jiarong. Simulation and Bionic Textiles[M]. Beijing: China Textile & Apparel Press, 2007: 3-20.
[4]TROTTA M G. Bio-inspired design methodology[J]. International Journal of Information Science, 2012, 1(1): 1-11.
[5]DAS S, BHOWMICK M, CHATTOPADHYAY S K, et al. Application of biomimicry in textiles[J]. Current Science, 2015, 109(5): 893.
[6]EADIE L, GHOSH T K. Biomimicry in textiles: Past, present and potential. An overview[J]. Journal of the Royal Society Interface, 2011, 8(59): 761-775.
[7]DAS S, SHANMUGAM N, KUMAR A, et al. Review:Potential of biomimicry in the field of textile technology[J]. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6(4): 224-235.
[8]WEERASINGHE D U, PERERA S, DISSANAYAKE D. Application of biomimicry for sustainable functionalization of textiles: review of current status and prospectus[J]. Textile Research Journal, 2019, 89(19/20): 4282-4294.
[9]REN L Q, LIANG Y H. Preliminary studies on the basic factors of bionics[J]. Science China Technological Sciences, 2014, 57(3): 520-530.
[10]DI J T, ZHANG X H, YONG Z Z, et al. Carbon-nanotube fibers for wearable devices and smart textiles[J]. Advanced Materials, 2016, 28(47): 10529-10538.
[11]TAO P, SHANG W, SONG C Y, et al. Bioinspired engineering of thermal materials[J]. Advanced Materials, 2015, 27(3): 428-463.
[12]CUI Y, GONG H X, WANG Y J, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018, 30(14): 1706807.
[13]WANG Y J, CUI Y, SHAO Z Y, et al. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments[J]. Chemical Engineering Journal, 2020, 390: 124623.
[14]ZHAN H J, WU K J, Hu Y L, et al. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation[J]. Chem, 2019, 5(7): 1871-1882.
[15]CHEN C J, HU L B. Super elastic and thermally insulating carbon aerogel: Go tubular like polar bear hair[J]. Matter, 2019, 1(1): 36-38.
[16]ZHAO Y C, FANG F. A biomimetic textile with self-assembled hierarchical porous fibers for thermal insulation[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25851-25860.
[17]WANG L, CHI W L, LIU C Y, et al. Large-scalable polar bear hair-like cellular hollow fibers with excellent thermal insulation and ductility[J]. Journal of Applied Polymer Science, 2022, 139(42): e53018.
[18]METWALLY S, Martínez Comesaña S, ZARZYKA M, et al. Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair[J]. Acta Biomaterialia, 2019, 91: 270-283.
[19]周长年, 吴鹏飞. 仿生智能温控纤维及织物的研究进展[J]. 纺织导报, 2022(5): 57-60.
ZHOU Changnian, WU Pengfei. Advances in intelligent temperature-controlled biomimetic fibers and fabrics[J]. China Textile Leader, 2022(5): 57-60.
[20]孙正,单忠德,王尧尧,等. 一种基于仿生企鹅羽毛排布的防热复合材料及其制备方法: CN114714689A[P]. 2023-03-31.
SUN Zheng, SHAN Zhongde, WANG Yaoyao, et al. A heat-resistant composite material based on bionic penguin feather arrangement and its preparation method: CN114714689A[P]. 2023-03-31.
[21]YE G M, WAN Y F, WU J M, et al. Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction[J]. Nano Energy, 2022, 97: 107148.
[22]GAO J, YU W D, PAN N. Structures and properties of the goose down as a material for thermal insulation[J]. Textile Research Journal, 2007, 77(8): 617-626.
[23]XU K L, DENG J X, TIAN G L, et al. Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances[J]. Nano Research, 2022, 15(6): 5695-5704.
[24]赵国玲.生物绒革新防寒服填充物市场[J].纺织服装周刊, 2014(9): 77.
ZHAO Guoling. Biofleece revolutionizes the market for cold-weather clothing fillings[J]. Textile Apparel Weekly, 2014(9): 77.
[25]WANG Y X, SHANG S M, CHIU K L, et al. Mimicking Saharan silver ant’s hair: a bionic solar heat shielding architextile with hexagonal ZnO microrods coating[J]. Materials Letters, 2020, 261: 127013.
[26]XU D, CHEN Z, LIU Y C, et al. Hump-Inspired hierarchical fabric for personal thermal protection and thermal comfort management[J]. Advanced Functional Materials, 2023, 33(10): 2212626.
[27]韩朋帅, 鲁鹏, 刘国金, 等. 纺织品结构生色的研究进展[J]. 丝绸, 2021, 58(3): 41-50.
HAN Pengshuai, LU Peng, LIU Guojin, et al. Research progress of bio-structural coloration on textiles[J]. Journal of Silk, 2021, 58(3): 41-50.
[28]武萁,祝成炎,李启正,等. 功能与色彩仿生纺织品的研究进展与应用趋势[J]. 纺织导报, 2020(10): 50-52.
WU Qi, ZHU Chengyan, LI Qizheng, et al. Research progress and application trend of functional and color
bionic textiles[J]. China Textile Leader, 2020(10): 50-52.
[29]王晓辉,刘国金,邵建中.纺织品仿生结构生色[J]. 纺织学报,2021,42(12):1-14.
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021,42(12): 1-14.
[30]DIAO Y Y, LIU X Y, TOH G W, et al. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing[J]. Advanced Functional Materials, 2013, 23(43): 5373-5380.
[31]SUN J Y, BHUSHAN B, TONG J. Structural coloration in nature[J]. RSC Advances, 2013, 3(35): 14862-14889.
[32]LIU X H, LIU H L, ZHENG H L, et al. Biomimetic fabrication of melanin-like polydopamine nanofilm coating for structural colorization of textile[J]. Progress in Organic Coatings, 2021, 152: 106138.
[33]YANG H Y, ZHOU J Y, DUAN Z J, et al. Preparation of structural color on cotton fabric with high color fastness through multiple hydrogen bonds between polyphenol hydroxyl and lactam[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3244-3254.
[34]LAI C F. Colloidal photonic crystals containing copper-oxide and silver nanoparticles with tunable structural colors[M]//Advances in Colloid Science. London: IntechOpen, 2016.
[35]ZYLA G, KOVALEV A, GRAFEN M, et al. Generation of bioinspired structural colors via two-photon polymerization[J]. Scientific Reports, 2017, 7: 17622.
[36]KOHRI M. Progress in polydopamine-based melanin mimetic materials for structural color generation[J]. Science and Technology of Advanced Materials, 2020, 21(1): 833-848.
[37]YOSHIOKA S, KINOSHITA S. Effect of macroscopic structure in iridescent color of the peacock feathers[J]. FORMA-TOKYO-Citeseer, 2002.
[38]ZI J A, YU X D, LI Y Z, et al. Coloration strategies in peacock feathers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 12576-12578.
[39]LI Y Z, LU Z H, YIN H W, et al. Structural origin of the brown color of barbules in male peacock tail feathers[J]. Physical Review E, 2005, 72 (1 Pt 1): 010902.
[40]YOSHIOKA S, KINOSHITA S, IIDA H, et al. Phase-adjusting layers in the multilayer reflector of a jewel beetle[J]. Journal of the Physical Society of Japan, 2012, 81(5): 054801.
[41]SCHENK F, WILTS B D, STAVENGA D G. The Japanese jewel beetle: A painter's challenge[J]. Bioinspiration & Biomimetics, 2013, 8(4): 045002.
[42]FANG Y C, LIU X H, ZHENG H L, et al. Eco-friendly colorization of textile originating from polydopamine nanofilm structural color with high colorfastness[J]. Journal of Cleaner Production, 2021, 295: 126523.
[43]ZHU X W, YAN B B, YAN X J, et al. Fabrication of non-iridescent structural color on silk surface by rapid polymerization of dopamine[J]. Progress in Organic Coatings, 2020, 149: 105904.
[44]WEI D W, WEI H Y, GAUTHIER A C, et al. Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 1-15.
[45]BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 2011, 56(1): 1-108.
[46]YAO H, XIE Z L, HUANG C H, et al. Recent progress of hydrophobic cement-based materials: Preparation, characterization and properties[J]. Construction and Building Materials, 2021, 299: 124255.
[47]WANG Y C, PENG S, SHI X M, et al. A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics[J]. Applied Surface Science, 2020, 505: 144621.
[48]FOORGINEZHAD S, ZERAFAT M M. Fabrication of stable fluorine-free superhydrophobic fabrics for anti-adhesion and self-cleaning properties[J]. Applied Surface Science, 2019, 464: 458-471.
[49]ZHANG H, ZHAO G, OU J, et al. Superhydrophobic cotton fabric based on polydopamine via simple one-pot immersion for oil water separation[J]. Chinese Journal of Materials Research, 2022, 36(2): 114-122.
[50]马菡婧,尚淼,何源.仿生设计的功能纺织品和服装的研究进展[J].毛纺科技, 2020,48(7): 84-88.
MA Hanjing, SHANG Miao, HE Yuan. Development of bio-inspired functional textiles and clothes[J]. Wool Textile Journal, 2020,48(7): 84-88.
[51]CHENG Y, ZHU T X, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298.
[52]HE T J, CHEN X Y, WANG Y X, et al. Fabrication of durable superhydrophobic surfaces of polyester fabrics via fluorination-induced grafting copolymerization[J]. Applied Surface Science, 2020, 515: 146006.
[53]HOU K, ZENG Y C, ZHOU C L, et al. Facile generation of robust POSS-based superhydrophobic fabrics via thiol-ene click chemistry[J]. Chemical Engineering Journal, 2018, 332: 150-159.
[54]GAO X F, JIANG L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
[55]GAO J, LIU J, XU R F, et al. Micro-nanostructure-based super-hydrophobic surface on cotton fabric[J]. Textile Research Journal, 2018, 88(22): 2602-2610.
[56]PAN G M, XIAO X Y, YE Z H. Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency[J]. Surface and Coatings Technology, 2019, 360: 318-328.
[57]YAN B B, ZHOU Q Q, ZHU X W, et al. A superhydrophobic bionic coating on silk fabric with flame retardancy and UV shielding ability[J]. Applied Surface Science, 2019, 483: 929-939.
[58]WANG Y. Research on flexible capacitive sensors for smart textiles[J]. Journal of Physics: Conference Series, 2022, 2181(1): 012038.
[59]ZHU H, DAI S P, CAO J, et al. A high-performance textile pressure sensor based on carbon black/carbon nanotube-polyurethane coated fabrics with porous structure for monitoring human motion[J]. Materials Today Communications, 2022, 33: 104541.
[60]ZHANG D H, JIAN J Y, XIE Y T, et al. Mimicking skin cellulose hydrogels for sensor applications[J]. Chemical Engineering Journal, 2022, 427: 130921.
[61]WANG Y H, ZHU J D, SHEN M, et al. Three-layer core-shell Ag/AgCl/PEDOT: PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors[J]. Chemical Engineering Journal, 2022, 442: 136270.
[62]GHOSH S K, ADHIKARY P, JANA S, et al. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring[J]. Nano Energy, 2017, 36: 166-175.
[63]HA M, LIM S, CHO S, et al. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors[J]. ACS Nano, 2018, 12(4): 3964-3974.
[64]LU Y, AIMETTI A A, LANGER R, et al. Bioresponsive materials[J]. Nature Reviews Materials, 2017, 2: 16075.
[65]WANG P, WANG M X, ZHU J D, et al. Surface engineering via self-assembly on PEDOT: PSS fibers: biomimetic fluff-like morphology and sensing application[J]. Chemical Engineering Journal, 2021, 425: 131551.
[66]NIU H S, LI H, LI Y, et al. Cocklebur-inspired “branch-seed-spininess” 3D hierarchical structure bionic electronic skin for intelligent perception[J]. Nano Energy, 2023, 107: 108144.
[67]LUO Z B, DUAN J P, XU H C, et al. Flexible capacitive pressure sensor based on an embedded rib fabric with a bionic sloping petal structure[J]. IEEE Sensors Journal, 2021, 21(18): 20119-20128.
[68]LUO Z B, DUAN J P, XU H C, et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection[J]. Nano Energy, 2022, 97: 107168.
|