现代纺织技术 ›› 2023, Vol. 31 ›› Issue (6): 241-254.
出版日期:
2023-11-10
网络出版日期:
2023-11-17
通讯作者:
顾鹏,E-mail: peng.gu@jiangnan.edu.cn
作者简介:
谢金林(2000―),女,湖北荆门人,硕士研究生,主要从事导电材料与智能穿戴方面的研究。
基金资助:
Published:
2023-11-10
Online:
2023-11-17
摘要: 近年来随着科技的发展以及人类生活水平的提升,以导电纤维/纱线为原料织造而成的现代新型纺织品在抗静电、电磁屏蔽、传感等领域得到了巨大的进展。然而由于传统金属导电纤维手感差及传统碳纤维难以进行色彩再加工等原因,限制了传统导电纤维在现代纺织品尤其是智能纺织品上的发展与应用。本文结合近年来国内外导电纤维领域的研究成果,从导电纤维的分类、制备方法、应用等几个角度出发,综述了导电纤维在新型纺织品中的应用进展。文章将导电纤维分成无机导电纤维、有机导电纤维和复合导电纤维等三大类,介绍了导电纤维的制备方法,如纺丝法、涂覆导电层法等;并着重介绍了导电纤维在抗静电、抗电磁辐射和纤维基柔性传感器中的应用。最后,文章总结了导电纤维近年来的发展和应用趋势,并指出其在发展中面临的亟待解决的问题。期望导电纤维不仅在传统的抗静电、抗辐射领域发挥作用,而且能与物理、电子等学科进行交叉,在智能可穿戴电子器件、柔性能源存储及多功能纺织品等领域广泛应用。
中图分类号:
谢金林, 张 京, 郭宇星, 赵志慧, 邱 华, 顾 鹏. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(6): 241-254.
XIE Jinlin, ZHANG Jing, GUO Yuxing, ZHAO Zhihui, QIU Hua, GU Peng, . Application progress of conductive fibers in the application of new textiles[J]. Advanced Textile Technology, 2023, 31(6): 241-254.
[1]邢声远. 纤维辞典[M]. 北京: 化学工业出版社, 2007: 32. XING Shengyuan. Fiber Dictionary[M]. Beijing: Chemical Industry Press, 2007: 32. [2]SHAO G W, YU R, ZHANG X, et al. Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers[J]. Advanced Functional Materials, 2020, 30(35): 2003153. [3]陈东, 周秀玲. 不锈钢纤维牵切工艺的研究[J]. 棉纺织技术, 2008, 36(7): 16-19. CHEN Dong, ZHOU Xiuling. Study on draft-cutting processing of stainless steel fibre[J]. Cotton Textile Technology, 2008, 36(7): 16-19. [4]SCHMIDT E, HASAN M M B, ABDKADER A, et al. Development of a process chain for the production of high-performance 100% metal spun yarns based on planed metal staple fibres[J]. SN Applied Sciences, 2020, 2(8): 1-17. [5]田明伟, 张高晶, 曲丽君, 等. 导电纤维及其传感器在可穿戴智能纺织品领域的应用[J]. 纺织高校基础科学学报, 2021, 3(3): 51-59. TIAN Mingwei, ZHANG Gaojing, QU Lijun, et al. The application of conductive fibers and its flexible sensors in wearable intelligent textiles field[J]. Basic Sciences Journal of Textile Universities, 2021, 34(3): 51-59. [6]翟娅茹, 沈兰萍. 导电纺织品的研究现状及展望[J]. 棉纺织技术, 2019, 47(2): 81-84. ZHAI Yaru, SHEN Lanping. Research status and prospect of conductive textiles[J]. Cotton Textile Technology, 2019, 47(2): 81-84. [7]赵菊梅, 周彬. 防静电纤维及其应用现状[J]. 纺织科技进展, 2009(5): 38-39. ZHAO Jumei, ZHOU Bin. Anti-static fiber and its application status[J]. Progress in Textile Science & Technology, 2009(5): 38-39. [8]陈爱华, 王海侨, 赵彬, 等. Fe3O4/聚吡咯复合材料的制备及表征[J]. 复合材料学报, 2004, 21(2): 157-160. CHEN Aihua, WANG Haiqiao, ZHAO Bin, et al. Preparation and characterization of Fe3O4/polypyrrole(PPy) composites[J]. Acta Materiae Compositae Sinica, 2004, 21(2): 157-160. [9]舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394. SHU Xin, LI Zhaoxiang, XIA Jiangbin. Method for synthesizing polythiophene[J]. Progress In Chemistry, 2015, 27(4): 385-394. [10]张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35(10): 2234-2238. ZHANG Yue, WANG Guangjin, PAN Mu. Fast Electropolymerization of Polyaniline Nanofibers on Carbon Paper[J]. Chemical Journal of Chinese Universities, 2014, 35(10): 2234-2238. [11]费洋, 金磊, 宋宏伟, 等. 聚苯胺电极的电导率[J]. 功能高分子学报, 2016, 29(2): 213-219. FEI Yang, JIN Lei, SONG Hongwei, et al. Electric Conductivity of polyaniline electrode[J]. Journal of Founctional Polymers, 2016, 29(2): 213-219. [12]李瑶, 陈婷婷, 杨旭东. 纺织用导电纤维及其应用[J]. 产业用纺织品, 2010, 28(4): 32-35. LI Yao, CHEN Tingting, YANG Xudong. Conductive fibers for textile and its applications[J]. Technical Textiles, 2010, 28(4): 32-35. [13]GREGORY R V, KIMBRELL W C, KUHN H H. Conductive textiles[J]. Synthetic Metals, 1989, 28(1/2): 823-835. [14]FOITZIK R C, KAYNAK A, PFEFFER F M. Application of soluble poly (3-alkylpyrole)polymers on textiles[J]. Synthetic Metals, 2006, 156(7): 637-642. [15]TANG B, SUN L, KAUR J, et al. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics[J]. Dyes and Pigments, 2014, 103: 183-190. [16]WANG J F, HUANG S, LU X, et al. Wet-spinning of highly conductive nanocellulose–silver fibers[J]. Journal of Materials Chemistry C, 2017, 5(37), 9673-9679. [17]ZHOU S Y, KONG X Y, ZHENG B, et al. Cellulose nanofiber @conductive metal-organic frameworks for high-performance flexible supercapacitors[J]. ACS Nano, 2019, 13(8): 9578-9586. [18]ZHANG H Y, JI H, CHEN J Y, et al. A multi-scale MXene coating method for preparing washable conductive cotton yarn and fabric[J]. Industrial Crops and Products, 2022, 188: 115653. [19]ROHANI SHIRVAN A, NOURI A, SUTTI A. A perspective on the wet spinning process and its advancements in biomedical sciences[J]. European Polymer Journal, 2022, 181: 111681. [20]朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles[J]. Advanced Textile Technology, 2022, 30(4):1-11. [21]薛超, 朱浩, 杨晓川, 等. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(7): 29-35. XUE Chao, ZHU Chao. YANG Xiaochuan, et al. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers[J]. Journal of Textile Research, 2022, 43(7): 29-35. [22]陈子阳, 潘志娟. 微流控纺丝及其在生物质纤维开发中的应用[J]. 现代丝绸科学与技术, 2019, 34(4): 33-37. CHEN Ziyang, PAN Zhijuan. Microfluidic spinning and its application in the development of biomass fibers[J]. Modern Silk Science & Technology, 2019, 34(4): 33-37. [23]SRIVASTAVA Y, MARQUEZ M, THORSEN T. Multijet electrospinning of conducting nanofibers from microfluidic manifolds[J]. Journal of Applied Polymer Science, 2007, 106(5): 3171-3178. [24]YOON K, KIM K, WANG X F, et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer, 2006, 47(7): 2434-2441. [25]ZHOU T, NIU Y T, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers[J]. Materials & Design, 2021, 203: 109557. [26]HOU P X, ZHANG F, ZHANG L L, et al, Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications (adv. funct. mater. 11/2022)[J]. Advanced Functional Materials, 2022, 32(11): 2270066. [27]Cho H, Tabata I, Hisada K, et al. Characterization of copper-plated conductive fibers after pretreatment with supercritical carbon dioxide and surface modification using Lyocell fiber[J]. Textile Research Journal, 2013, 83(8): 780-793. [28]郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016(9): 143-144. ZHENG Shaoming, LAI Xianghui, LIN Benshu. Development and application of conductive fibers[J]. China Fiber Inspection, 2016(9): 143-144. [29]范洁. 聚苯胺接枝共聚改性聚乙烯醇复合导电材料的制备、微观形貌及性能[D]. 西安: 陕西科技大学, 2016: 43-67. FAN Jie. Preparation、Micromorphology and Properties of Polyaniline graft Copolymerization Modified Polyvinyl Alcohol Conductive Composites[D]. Xi’an: Shanxi University of Science and Technology, 2016: 43-67. [30]韩朝锋, 黄真, 庄昌明, 等. 导电纤维的专利技术分布[J]. 科技信息, 2017(4): 168-169. HAN Chaofeng, HUANG Zhen, ZHUANG Changming, et al. Patented technology distribution of conductive fibers[J]. Science & Technology Information, 2017(4): 168-169. [31]林东, 官建国. 金属纤维阵列的制备技术[J]. 材料科学与工艺, 2008, 16(3): 392-396. LIN Dong, GUAN Jianguo. Preparation techniques of metal fibers arrays[J]. Materials Science & Technology, 2008, 16(3): 392-396. [32]刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1): 67-83. LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83. [33]MARION J S, GUPTA N, CHEUNG H, et al. Thermally drawn highly conductive fibers with controlled elasticity[J]. Advanced Materials, 2022, 34(19): 2201081. [34]董俊霞, 杨志捧. 抗静电织物的设计与开发[J]. 棉纺织技术, 2007, 35(5): 57-59. DONG Junxia, YANG Zhipeng. Design and development of antistatic fabric[J]. Cotton Textile Technology, 2007, 35(5): 57-59. [35]梁列峰, 赵晓, 李奇菊. 抗静电纤维和织物的成型原理及制备技术[J]. 纤维素科学与技术, 2006, 14(2): 65-70. LIANG Liefeng, ZHAO Xiao, LI Qiju. Principle and preparation technique of antistatic fiber and textile[J]. Journal of Cellulose Science and Technology, 2006, 14(2): 65-70. [36]伏广伟, 王瑞, 倪玉婷. 有机导电短纤维混纺纱的导电和抗静电性能[J]. 纺织学报, 2009, 30(6): 34-38. FU Guangwei, WANG Rui, NI Yuting. Conductive and antistatic property of yarns blended with organic conductive staple fibers[J]. Journal of Textile Research, 2009, 30(6): 34-38. [37]南燕, 张燕, 施楣梧. 用非金属导电纤维开发纯涤纶抗静电织物[J]. 纺织学报, 2001, 22(2): 4-6,9. NAN Yan, ZHANG Yan, SHI Meiwu. The development of polyster antistatic fabric by non-metal conductive fiber[J]. Journal of Textile Research, 2001, 22(2): 4-6,9. [38]林燕燕, 陈玉香, 张莲莲, 等. 嵌织式涤纶抗静电织物设计与性能分析[J]. 现代纺织技术, 2018, 26(6): 43-46. LIN Yanyan, CHEN Yuxiang, ZHANG Lianlian, et al. Design and performance analysis of mosaic polyester antistatic fabric[J]. Advanced Textile Technology, 2018, 26(6): 43-46. [39]XU C C, FANG L, YU M M, et al. Enhancing anti-static performance of fibers by construction of the hybrid conductive network structure on the fiber surface[J].Polymers, 2021, 13(14): 2248. [40]MISHRA M, SINGH A P, DHAWAN S K. Expanded graphite-nanoferrite-fly ash composites for shielding of electromagnetic pollution[J]. Journal of Alloys and Compounds, 2013, 557: 244-251. [41]XIONG J H, ZHANG H W, DING R J, et al. Multifunctional non-woven fabrics based on interfused MXene fibers[J]. Materials & Design, 2022, 223: 111207. [42]WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7): 1806819. [43]LIU L X, CHEN W, ZHANG H B, et al. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency[J]. Nano-Micro Letters, 2022, 14(1): 111. [44]QI K, WANG H B, YOU X L, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103. [45]XU L L, LIU Z K, ZHAI H, et al. Moisture-resilient graphene-dyed wool fabric for strain sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13265-13274. [46]ZHANG L, HE J, LIAO Y S, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26631-26640. [47]LI Q M, YIN R, ZHANG D B, et al. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors[J]. Journal of Materials Chemistry A, 2020, 8(40): 21131-21141. [48]LIU H, LI Q M, BU Y B, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy, 2019, 66: 104143. [49]HAN S T, PENG H Y, SUN Q J, et al. An overview of the development of flexible sensors[J]. Advanced Materials, 29(33): 1700375. [50]LIU M, ZHANG S S, LIU S, et al. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance[J]. Composites Part A: Applied Science and Manufacturing, 2019, 126: 105612. [51]DEKA B K, HAZARIKA A, KIM J, et al. Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring[J]. Carbon, 2019, 152: 376-387. [52]MA Q, HAO B, MA P C. Modulating the sensitivity of a flexible sensor using conductive glass fiber with a controlled structure profile[J]. Composites Communications, 2020, 20: 100367. [53]FU Y F, LI Y Q, LIU Y F, et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35503-35509. |
[1] | 王 勇, 乔启凡, 王宗乾, 李长龙, 王 炜. 氨纶预牵伸倍数对棉/氨纶/不锈钢丝包覆纱性能的影响#br#[J]. 现代纺织技术, 2024, 32(5): 32-40. |
[2] | 岳欣琰, 洪剑寒. 一维结构可穿戴柔性传感器研究进展[J]. 现代纺织技术, 2024, 32(2): 27-39. |
[3] | 崔瑞祺, 商元元, 李娟鹃, 张浩, 史宝会, 房宽峻. 石墨烯/聚丙烯腈皮芯结构纤维成型构筑及功能性[J]. 现代纺织技术, 2024, 32(12): 1-9. |
[4] | 王嘉宁, 司苏求, 郑心怡, 刘玮. 碳纳米管质量分数对纳米芳纶复合气凝胶纤维电磁屏蔽性能的影响[J]. 现代纺织技术, 2024, 32(1): 64-72. |
[5] | 房翔敏, 曲丽君, 田明伟. 绒面织物基摩擦电式压力传感器的制备及其应用[J]. 现代纺织技术, 2023, 31(4): 183-191. |
[6] | 李东亮, 刘慧莹, 李乐乐, 孙保杰, 江亮, 周彦粉, 陈韶娟, 马建伟. SBS/CNTs弹性导电复合纤维的制备与性能[J]. 现代纺织技术, 2023, 31(3): 121-127. |
[7] | 虞美雅, Rahmatulloev Kishvar, 毛丽娟, 吴晶瑾, 沈国建, 邹专勇. 阴离子型抗静电剂的合成及其性能[J]. 现代纺织技术, 2023, 31(2): 177-. |
[8] | 苏婧, 兰春桃, 王静, 关玉, 付少海. 纺织基电磁屏蔽材料的发展与应用[J]. 现代纺织技术, 2022, 30(6): 219-230. |
[9] | 朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. |
[10] | 刘亚琼, 李楠, 李雯, 王利君. 服装结构设计对电磁屏蔽效能的影响[J]. 现代纺织技术, 2022, 30(4): 193-199. |
[11] | 计瑜, 刘元军, 赵晓明, 侯硕. 电磁屏蔽织物的研究现状[J]. 现代纺织技术, 2022, 30(3): 1-12. |
[12] | 刘娜, 陈香云, 张永锋, 吕文静, 焦志颖. 烟气净化用滤料表面改性及其性能[J]. 现代纺织技术, 2022, 30(1): 162-168. |
[13] | 周子滢,段茹雪,刘宁娟,贾可,刘玮. 碳纳米管涂层双罗纹织物的电磁屏蔽性能[J]. 现代纺织技术, 2021, 29(4): 43-50. |
[14] | 王翊,刘元军,赵晓明. 碳系电磁屏蔽材料的研究进展[J]. 现代纺织技术, 2021, 29(1): 1-11. |
[15] | 汪秀琛,李亚云,段佳佳,刘哲,周忠. 宽频范围同类型双层电磁屏蔽织物的屏蔽效能变化规律[J]. 现代纺织技术, 2020, 28(3): 21-26. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 416
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||