[1]邢声远. 纤维辞典[M]. 北京: 化学工业出版社, 2007: 32.
XING Shengyuan. Fiber Dictionary[M]. Beijing: Chemical Industry Press, 2007: 32.
[2]SHAO G W, YU R, ZHANG X, et al. Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers[J]. Advanced Functional Materials, 2020, 30(35): 2003153.
[3]陈东, 周秀玲. 不锈钢纤维牵切工艺的研究[J]. 棉纺织技术, 2008, 36(7): 16-19.
CHEN Dong, ZHOU Xiuling. Study on draft-cutting processing of stainless steel fibre[J]. Cotton Textile Technology, 2008, 36(7): 16-19.
[4]SCHMIDT E, HASAN M M B, ABDKADER A, et al. Development of a process chain for the production of high-performance 100% metal spun yarns based on planed metal staple fibres[J]. SN Applied Sciences, 2020, 2(8): 1-17.
[5]田明伟, 张高晶, 曲丽君, 等. 导电纤维及其传感器在可穿戴智能纺织品领域的应用[J]. 纺织高校基础科学学报, 2021, 3(3): 51-59.
TIAN Mingwei, ZHANG Gaojing, QU Lijun, et al. The application of conductive fibers and its flexible sensors in wearable intelligent textiles field[J]. Basic Sciences Journal of Textile Universities, 2021, 34(3): 51-59.
[6]翟娅茹, 沈兰萍. 导电纺织品的研究现状及展望[J]. 棉纺织技术, 2019, 47(2): 81-84.
ZHAI Yaru, SHEN Lanping. Research status and prospect of conductive textiles[J]. Cotton Textile Technology, 2019, 47(2): 81-84.
[7]赵菊梅, 周彬. 防静电纤维及其应用现状[J]. 纺织科技进展, 2009(5): 38-39.
ZHAO Jumei, ZHOU Bin. Anti-static fiber and its application status[J]. Progress in Textile Science & Technology, 2009(5): 38-39.
[8]陈爱华, 王海侨, 赵彬, 等. Fe3O4/聚吡咯复合材料的制备及表征[J]. 复合材料学报, 2004, 21(2): 157-160.
CHEN Aihua, WANG Haiqiao, ZHAO Bin, et al. Preparation and characterization of Fe3O4/polypyrrole(PPy) composites[J]. Acta Materiae Compositae Sinica, 2004, 21(2): 157-160.
[9]舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394.
SHU Xin, LI Zhaoxiang, XIA Jiangbin. Method for synthesizing polythiophene[J]. Progress In Chemistry, 2015, 27(4): 385-394.
[10]张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35(10): 2234-2238.
ZHANG Yue, WANG Guangjin, PAN Mu. Fast Electropolymerization of Polyaniline Nanofibers on Carbon Paper[J]. Chemical Journal of Chinese Universities, 2014, 35(10): 2234-2238.
[11]费洋, 金磊, 宋宏伟, 等. 聚苯胺电极的电导率[J]. 功能高分子学报, 2016, 29(2): 213-219.
FEI Yang, JIN Lei, SONG Hongwei, et al. Electric Conductivity of polyaniline electrode[J]. Journal of Founctional Polymers, 2016, 29(2): 213-219.
[12]李瑶, 陈婷婷, 杨旭东. 纺织用导电纤维及其应用[J]. 产业用纺织品, 2010, 28(4): 32-35.
LI Yao, CHEN Tingting, YANG Xudong. Conductive fibers for textile and its applications[J]. Technical Textiles, 2010, 28(4): 32-35.
[13]GREGORY R V, KIMBRELL W C, KUHN H H. Conductive textiles[J]. Synthetic Metals, 1989, 28(1/2): 823-835.
[14]FOITZIK R C, KAYNAK A, PFEFFER F M. Application of soluble poly (3-alkylpyrole)polymers on textiles[J]. Synthetic Metals, 2006, 156(7): 637-642.
[15]TANG B, SUN L, KAUR J, et al. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics[J]. Dyes and Pigments, 2014, 103: 183-190.
[16]WANG J F, HUANG S, LU X, et al. Wet-spinning of highly conductive nanocellulose–silver fibers[J]. Journal of Materials Chemistry C, 2017, 5(37), 9673-9679.
[17]ZHOU S Y, KONG X Y, ZHENG B, et al. Cellulose nanofiber @conductive metal-organic frameworks for high-performance flexible supercapacitors[J]. ACS Nano, 2019, 13(8): 9578-9586.
[18]ZHANG H Y, JI H, CHEN J Y, et al. A multi-scale MXene coating method for preparing washable conductive cotton yarn and fabric[J]. Industrial Crops and Products, 2022, 188: 115653.
[19]ROHANI SHIRVAN A, NOURI A, SUTTI A. A perspective on the wet spinning process and its advancements in biomedical sciences[J]. European Polymer Journal, 2022, 181: 111681.
[20]朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11.
ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles[J]. Advanced Textile Technology, 2022, 30(4):1-11.
[21]薛超, 朱浩, 杨晓川, 等. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(7): 29-35.
XUE Chao, ZHU Chao. YANG Xiaochuan, et al. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers[J]. Journal of Textile Research, 2022, 43(7): 29-35.
[22]陈子阳, 潘志娟. 微流控纺丝及其在生物质纤维开发中的应用[J]. 现代丝绸科学与技术, 2019, 34(4): 33-37.
CHEN Ziyang, PAN Zhijuan. Microfluidic spinning and its application in the development of biomass fibers[J]. Modern Silk Science & Technology, 2019, 34(4): 33-37.
[23]SRIVASTAVA Y, MARQUEZ M, THORSEN T. Multijet electrospinning of conducting nanofibers from microfluidic manifolds[J]. Journal of Applied Polymer Science, 2007, 106(5): 3171-3178.
[24]YOON K, KIM K, WANG X F, et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating[J]. Polymer, 2006, 47(7): 2434-2441.
[25]ZHOU T, NIU Y T, LI Z, et al. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers[J]. Materials & Design, 2021, 203: 109557.
[26]HOU P X, ZHANG F, ZHANG L L, et al, Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications (adv. funct. mater. 11/2022)[J]. Advanced Functional Materials, 2022, 32(11): 2270066.
[27]Cho H, Tabata I, Hisada K, et al. Characterization of copper-plated conductive fibers after pretreatment with supercritical carbon dioxide and surface modification using Lyocell fiber[J]. Textile Research Journal, 2013, 83(8): 780-793.
[28]郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016(9): 143-144.
ZHENG Shaoming, LAI Xianghui, LIN Benshu. Development and application of conductive fibers[J]. China Fiber Inspection, 2016(9): 143-144.
[29]范洁. 聚苯胺接枝共聚改性聚乙烯醇复合导电材料的制备、微观形貌及性能[D]. 西安: 陕西科技大学, 2016: 43-67.
FAN Jie. Preparation、Micromorphology and Properties of Polyaniline graft Copolymerization Modified Polyvinyl Alcohol Conductive Composites[D]. Xi’an: Shanxi University of Science and Technology, 2016: 43-67.
[30]韩朝锋, 黄真, 庄昌明, 等. 导电纤维的专利技术分布[J]. 科技信息, 2017(4): 168-169.
HAN Chaofeng, HUANG Zhen, ZHUANG Changming, et al. Patented technology distribution of conductive fibers[J]. Science & Technology Information, 2017(4): 168-169.
[31]林东, 官建国. 金属纤维阵列的制备技术[J]. 材料科学与工艺, 2008, 16(3): 392-396.
LIN Dong, GUAN Jianguo. Preparation techniques of metal fibers arrays[J]. Materials Science & Technology, 2008, 16(3): 392-396.
[32]刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1): 67-83.
LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83.
[33]MARION J S, GUPTA N, CHEUNG H, et al. Thermally drawn highly conductive fibers with controlled elasticity[J]. Advanced Materials, 2022, 34(19): 2201081.
[34]董俊霞, 杨志捧. 抗静电织物的设计与开发[J]. 棉纺织技术, 2007, 35(5): 57-59.
DONG Junxia, YANG Zhipeng. Design and development of antistatic fabric[J]. Cotton Textile Technology, 2007, 35(5): 57-59.
[35]梁列峰, 赵晓, 李奇菊. 抗静电纤维和织物的成型原理及制备技术[J]. 纤维素科学与技术, 2006, 14(2): 65-70.
LIANG Liefeng, ZHAO Xiao, LI Qiju. Principle and preparation technique of antistatic fiber and textile[J]. Journal of Cellulose Science and Technology, 2006, 14(2): 65-70.
[36]伏广伟, 王瑞, 倪玉婷. 有机导电短纤维混纺纱的导电和抗静电性能[J]. 纺织学报, 2009, 30(6): 34-38.
FU Guangwei, WANG Rui, NI Yuting. Conductive and antistatic property of yarns blended with organic conductive staple fibers[J]. Journal of Textile Research, 2009, 30(6): 34-38.
[37]南燕, 张燕, 施楣梧. 用非金属导电纤维开发纯涤纶抗静电织物[J]. 纺织学报, 2001, 22(2): 4-6,9.
NAN Yan, ZHANG Yan, SHI Meiwu. The development of polyster antistatic fabric by non-metal conductive fiber[J]. Journal of Textile Research, 2001, 22(2): 4-6,9.
[38]林燕燕, 陈玉香, 张莲莲, 等. 嵌织式涤纶抗静电织物设计与性能分析[J]. 现代纺织技术, 2018, 26(6): 43-46.
LIN Yanyan, CHEN Yuxiang, ZHANG Lianlian, et al. Design and performance analysis of mosaic polyester antistatic fabric[J]. Advanced Textile Technology, 2018, 26(6): 43-46.
[39]XU C C, FANG L, YU M M, et al. Enhancing anti-static performance of fibers by construction of the hybrid conductive network structure on the fiber surface[J].Polymers, 2021, 13(14): 2248.
[40]MISHRA M, SINGH A P, DHAWAN S K. Expanded graphite-nanoferrite-fly ash composites for shielding of electromagnetic pollution[J]. Journal of Alloys and Compounds, 2013, 557: 244-251.
[41]XIONG J H, ZHANG H W, DING R J, et al. Multifunctional non-woven fabrics based on interfused MXene fibers[J]. Materials & Design, 2022, 223: 111207.
[42]WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7): 1806819.
[43]LIU L X, CHEN W, ZHANG H B, et al. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency[J]. Nano-Micro Letters, 2022, 14(1): 111.
[44]QI K, WANG H B, YOU X L, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103.
[45]XU L L, LIU Z K, ZHAI H, et al. Moisture-resilient graphene-dyed wool fabric for strain sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13265-13274.
[46]ZHANG L, HE J, LIAO Y S, et al. A self-protective, reproducible textile sensor with high performance towards human-machine interactions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26631-26640.
[47]LI Q M, YIN R, ZHANG D B, et al. Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors[J]. Journal of Materials Chemistry A, 2020, 8(40): 21131-21141.
[48]LIU H, LI Q M, BU Y B, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor[J]. Nano Energy, 2019, 66: 104143.
[49]HAN S T, PENG H Y, SUN Q J, et al. An overview of the development of flexible sensors[J]. Advanced Materials, 29(33): 1700375.
[50]LIU M, ZHANG S S, LIU S, et al. CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance[J]. Composites Part A: Applied Science and Manufacturing, 2019, 126: 105612.
[51]DEKA B K, HAZARIKA A, KIM J, et al. Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring[J]. Carbon, 2019, 152: 376-387.
[52]MA Q, HAO B, MA P C. Modulating the sensitivity of a flexible sensor using conductive glass fiber with a controlled structure profile[J]. Composites Communications, 2020, 20: 100367.
[53]FU Y F, LI Y Q, LIU Y F, et al. High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35503-35509.
|