现代纺织技术 ›› 2022, Vol. 30 ›› Issue (6): 219-230.DOI: 10.19398/j.att.202204002
苏婧1, 兰春桃1, 王静2, 关玉1,3, 付少海1,3
收稿日期:
2022-04-27
出版日期:
2022-11-10
网络出版日期:
2022-11-16
通讯作者:
付少海,E-mail:shaohaifu@hotmail.com
作者简介:
苏婧(1998—),女,湖南武冈人,博士研究生,主要从事功能纺织品方面的研究。
基金资助:
SU Jing1, LAN Chuntao1, WANG Jing2, GUAN Yu1,3, FU Shaohai1,3
Received:
2022-04-27
Published:
2022-11-10
Online:
2022-11-16
摘要: 随着电子信息技术的快速发展,电磁辐射污染也不断危害着人们的生命健康和生产活动。纺织基电磁屏蔽材料轻质柔软、可弯曲和易于加工成型,在民用服饰、航空航天、军事隐形等领域中具有极大的应用潜力。本文从电磁屏蔽的基本概念与机理出发,结合纺织基电磁屏蔽材料的最新研究进展,介绍了纺织基电磁屏蔽材料的开发方法,阐明了不同阶段的电磁屏蔽特性,并对未来纺织基电磁屏蔽材料的发展做出了展望。
中图分类号:
苏婧, 兰春桃, 王静, 关玉, 付少海. 纺织基电磁屏蔽材料的发展与应用[J]. 现代纺织技术, 2022, 30(6): 219-230.
SU Jing, LAN Chuntao, WANG Jing, GUAN Yu, FU Shaohai. Development and application of textile-based electromagnetic shielding materials[J]. Advanced Textile Technology, 2022, 30(6): 219-230.
[1] ALKAYYALI T, OCHUBA O, SRIVASTAVA K, et al. An exploration of the effects of radiofrequency radiation emitted by mobile phones and extremely low frequency radiation on thyroid hormones and thyroid gland histopathology[J]. Cureus, 2021, 13(8): e17329. [2] 张海柱.打开“科技黑箱”:新兴科技风险的行动者网络分析:以基站电磁辐射健康风险为例[J].内蒙古社会科学,2021,42(6):145-152. ZHANG Haizhu. Opening the "black box of science and technology": An actor network analysis of emerging science and technology risks-taking the health risk of electromagnetic radiation of base stations as an example[J]. Inner Mongolia Social Sciences, 2021, 42(6): 145-152. [3] 雷蕊英,季三飞,谭王景,等.石墨烯基电磁屏蔽材料研究进展[J].合成纤维,2022,51(2):41-47. LEI Ruiying, JI Sanfei, TAN Wangjing, et al. Research progress of graphene-based electromagnetic shielding materials[J]. Synthetic Fiber, 2022, 51(2): 41-47. [4] MESQUITA A, GLENN J, JENNY A. Differential activation of EMI by distinct forms of cellular stress[J]. Autophagy, 2021, 17(8): 1828-1840. [5] ACHARYA S R, SHIN Y C, MOON D H, et al. Electro-magnetic field exposure in kindergarten children: Responsive health risk concern[J]. Frontiers in Pediatrics, 2021, 9: 694407. [6] FIANCHI L, QUATTRONE M, CRISCUOLO M, et al. Extramedullary involvement in acute myeloid leukemia. A single center ten years' experience[J]. Mediterranean Journal of Hematology and Infectious Diseases, 2021, 13(1): e2021030. [7] GUPTA S, SHARMA R S, SINGH R. Non-ionizing radiation as possible carcinogen[J]. International Journal of Environmental Research and Public Health, 2022, 32(4): 916-940. [8] LIN H, WANG C. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network[J]. Applied Mathematics and Computation, 2020, 369: 124840. [9] 国家药品监督管理局.世界卫生组织国际癌症研究机构致癌物清单[A/OL].(2017-10-30)[2022-03-26].https:www.nmpa.gov.cn/xxgk/mtbd/20171030163101383.html. National Medical Products Administration. List of carci-nogens of the international agency for research on cancer of the WHO[A/OL].(2017-10-30)[2022-03-26]. https:www.nmpa.gov.cn/xxgk/mtbd/20171030163101383.html. [10] 李嘉麒,魏曙光,廖自力,等.陆战平台全电化关键技术发展综述[J].兵工学报,2021,42(10):2049-2059. LI Jiaqi, WEI Shuguang, LIAO Zili, et al. Overview of the development of all-electric key technologies for marine platforms[J]. Journal of Ordnance Engineering, 2021, 42(10): 2049-2059. [11] 康一丁,张振伍,毛莹.防空导弹武器系统复杂电磁干扰环境构建方法[J].现代防御技术,2020,48(2):50-54,68. KANG Yiding, ZHANG Zhenwu, MAO Ying. Construction method of complex electromagnetic interference environment of air defense missile weapon system[J]. Modern Defense Technology, 2020, 48(2): 50-54,68. [12] ZHU C S, GUO P F, ZHANG L C, et al. A novel silicon interposer based high security integration approach for microsystem[J]. Microelectronics Journal, 2021, 111: 105024. [13] 殷光.基于层层组装技术的电磁屏蔽复合织物的结构设计与性能研究[D].上海:东华大学,2021. YIN Guang. Structural Design and Performance Research of Electromagnetic Shielding Composite Fabric Based on Layer-by-layer Assembly Technology[D]. Shanghai: Donghua University, 2021. [14] Committee for conformity assessment on accreditation and certification of functional and technical textiles. Specified requirements of electromagnetic shielding textiles[S/OL].(2005-03-03)[2022-03-26]. www.ftts.org.tw/images/fa003E.pdf. [15] DING X, WANG Y, XU R, et al. Layered cotton/rGO/NiWP fabric prepared by electroless plating for excellent electromagnetic shielding performance[J]. Cellulose, 2019, 26(13-14): 8209-8223. [16] ROH J S, CHI Y S, TAE JIN K, et al. Electromagnetic shielding effectiveness of multifunctional metal composite fabrics[J]. Textile Research Journal, 2008, 78(9): 825-835. [17] CHUNG D D L. Materials for electromagnetic interference shielding[J]. Materials Chemistry and Physics, 2020, 255: 123587. [18] 杨明龙.碳基复合材料的微结构调控及其电磁波吸收性能研究[D].哈尔滨:哈尔滨工业大学,2021. YANG Minglong. Microstructure Control and Electro-magnetic Wave Absorption Properties of Carbon-based Composites[D]. Harbin: Harbin Institute of Technology, 2021. [19] OTT H W. Electromagnetic Compatibility Engineering[M]: Manhattan: John Wiley & Sons, Inc., 2009: 1-43. [20] 李雪婷.碳化硅纳米线基多元吸波材料的制备与性能研究[D].西安:西安建筑科技大学,2021. LI Xueting. Preparation and Properties of Multi-component Microwave Absorbing Materials Based on Silicon Carbide Nanowires[D].Xi'an: Xi'an University of Architecture and Technology, 2021. [21] 凌新龙,阳辰峰,宁军霞.纤维素的改性及应用研究进展[J].纺织科学与工程学报,2020,37(3):60-85. LING Xinlong, YANG Chenfeng, NING Junxia. Research progress of modification and application of cellulose[J]. Journal of Textile Science and Engineering, 2020, 37(3): 60-85. [22] LI S, LIU D, LI W, et al. Strong and heat-resistant SiC-coated carbonized natural loofah sponge for electromagnetic interference shielding[J]. ASC Sustainable Chemistry & Engineering, 2019, 8(1): 435-444. [23] ZHANG Y, YANG Z, PAN T, et al. Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 105994. [24] PAKDEL E, KASHI S, BAUM T, et al. Carbon fibre waste recycling into hybrid nonwovens for electromagnetic interference shielding and sound absorption[J]. Journal of Cleaner Production, 2021, 315: 128196. [25] PARK J, KWAC L K, KIM H G, et al. Fabrication and characterization of waste wood cellulose fiber/graphene nanoplatelet carbon papers for application as electromag-netic interference shielding materials[J]. Nanomaterials(Basel), 2021, 11(11): 2878. [26] HONG J, HU C, JIN L, et al. Conductive polyaniline-coated poly(p-phenylenetere phthamide) yarn-reinforced multiaxial composites for electromagnetic shielding[J]. Journal of Industrial Textiles, 2019, 51(3): 435-454. [27] AHMAD H S, HUSSAIN T, NAWAB Y, et al. Effect of dielectric and magnetic nanofillers on electromagnetic interference shielding effectiveness of carbon/epoxy compo-sites[J]. Journal of Composite Materials, 2022, 56(1): 69-82. [28] ZOU Q, SHI C, LIU B, et al. Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2Tx MXene fiber membranes[J]. Nanotechnology, 2021, 32(41): 415204. [29] XU L, LU H, ZHOU Y, et al. Ultrathin, ultralight, and anisotropic ordered reduced graphene oxide fiber electro-magnetic interference shielding membrane[J]. Advanced Materials Technologies, 2021, 6(12): 2100531. [30] LIU L, CHEN W, ZHANG H, et al. Tough and electrically conductive Ti3C2T MXene-based core-shell fibers for high-performance electromagnetic interference shielding and heating application[J]. Chemical Engineering Journal, 2022, 430: 133074. [31] MA J, ZHAO Q, ZHOU Y, et al. Hydrophobic wrapped carbon nanotubes coated cotton fabric for electrical heating and electromagnetic interference shielding[J]. Polymer Testing, 2021, 100: 107240. [32] ZHOU B, LI Z, LI Y, et al. Flexible hydrophobic 2D Ti3C2Tx-based transparent conductive film with multi-functional self-cleaning, electromagnetic interference shielding and joule heating capacities[J]. Composites Science and Technology, 2021, 201: 108531. [33] 王飞龙,杨晓娟.玻璃纤维化学镀Ni-W-P及其电磁屏蔽性能[J].产业用纺织品,2020,38(6):40-44. WANG Feilong, YANG Xiaojuan. Electroless Ni-W-P plating on glass fiber and its electromagnetic shielding performance[J]. Industrial Textiles, 2020, 38(6): 40-44. [34] GAO Y, WANG Y, YUE T, et al. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding[J]. Chemical Engineering Journal, 2022, 430: 132949. [35] LOU C, LIU Y, SHIU B, et al. Preparation and evaluation of polyester-cotton/wire blended conductive woven fabrics for electromagnetic shielding[J]. Journal of Industrial Textiles, 2021: 152808372199718. [36] LAI M F, HUANG C H, LIN J H, et al. Polypropylene/carbon fiber composite layered materials: Electromagnetic interference shielding effect and mechanical performance[J]. Fibers and Polymers, 2021, 22(9): 2552-2562. [37] GUPTA K K, ABBAS S M, ABHYANKAR A C. Effect of yarn composition and fabric weave design on microwave and EMI shielding properties of hybrid woven fabrics[J]. The Journal of The Textile Institute, 2021: 1-16. [38] WANG Y, GORDON S, YU W, et al. A highly stretchable, easily processed and robust metal wire-containing woven fabric with strain-enhanced electro-magnetic shielding effectiveness[J]. Textile Research Journal, 2021, 91(17-18): 2063-2073. [39] PALANISAMY S, TUNAKOVA V, HU S, et al. Electromagnetic interference shielding of metal coated ultrathin nonwoven fabrics and their factorial design[J]. Polymers(Basel), 2021, 13(4): 484. [40] DAS S, SHARMA S, YOKOZEKI T, et al. Conductive layer-based multifunctional structural composites for electromagnetic interference shielding[J]. Composite Structures, 2021, 261: 113293. [41] YÖRÜK A E, ERDOGˇAN M K, KARAK1SLA M, et al. Deposition of electrically-conductive polyaniline/ferrite nanoparticles onto the polypropylene nonwoven for the development of an electromagnetic interference shield material[J]. The Journal of The Textile Institute, 2021: 1-13. [42] ZHANG H, CHEN J, JI H, et al. Electromagnetic interference shielding with absorption-dominant perfor-mance of Ti3C2Tx MXene/non-woven laminated fabrics[J]. Textile Research Journal, 2021: 004051752110062. [43] FAN Z W, LIU R T, CHENG X J. Preparation and characterization of electromagnetic shielding composites based on graphene-nanosheets-loaded nonwoven fabric[J]. Coatings, 2021, 11(4): 424. [44] ZHOU Y, LI W, LI L, et al. Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding[J]. Journal of Materials Science, 2021, 56(10): 6499-6513. [45] LI T T, WANG X, WANG Y, et al. Silver-coated conductive composite fabric with flexible, anti-flaming for electromagnetic interference shielding[J]. Journal of Applied Polymer Science, 2021, 139(13): 51875. [46] ZHONG B, LIU W, YU Y, et al. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals[J]. Applied Surface Science, 2017, 420: 858-867. [47] CHOI H K, LEE A, PARK M, et al. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding[J]. ACS Nano, 2021, 15(1): 829-839. [48] YIN G, WANG Y, WANG W, et al. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 125047. [49] YIN G, WANG Y, WANG W, et al. A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly[J]. Advanced Materials Interfaces, 2021, 8(6): 2001893. [50] XU X R, WU S N, CUI J, et al. Insights into the microstructures and reinforcement mechanism of nanofibril-lated cellulose/MXene based electromagnetic interference shielding film[J]. Cellulose, 2021, 28(6): 3311-3325. [51] RAJAVEL K, YU X, ZHU P, et al. Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49737-49747. [52] WANG X C, HANG G G, LIU Z, et al. Study on finishing and electromagnetic properties of electromagnetic shielding fabric based on multilayer Ti3C2Tx medium[J]. Journal of the Textile Institute, 2021: 2010316. [53] YING M, ZHAO R, HU X, et al. Wrinkled titanium carbide(MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding[J]. Angewandte Chemie International Edition, 2022, 61(16): e202201323. [54] SINGH M K, SARASWAT G, MUKHOPADHYAY S, et al. Optimization of electromagnetic shielding of three-dimensional orthogonal woven hybrid fabrics in ku band frequency region by response surface methodology[J]. Journal of Industrial Textiles, 2022: 15280837211062054. [55] SHI S, PENG Z, JING J, et al. Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15565-15575. [56] KWON D J, KWON I J, MILAM-GUERRERO J, et al. Aramid nanofiber-reinforced multilayer electromagnetic-interference(EMI) shielding composites with high interfacial durability[J]. Materials & Design, 2022, 215: 110452. [57] KATULSKI R J, NAMIOTKO R. Topological model of an electromagnetic environment inside a ship for electromag-netic compatibility(EMC) analysis[J]. Applied Sciences, 2019, 9(20): 4293. [58] SIRKOVÁ B K, TUNÁKOVÁ V, TUNÁK M, et al. Influence of woven fabric construction parameters on electromagnetic shielding effectiveness: Part I—weave influence[J]. Textile Research Journal, 2022: 00405175 221100390. [59] LIN J H, HSU P W, HUANG C H, et al. A study on carbon fiber composites with low-melting-point polyester nonwoven fabric reinforcement: A highly effective electro-magnetic wave shield textile material[J]. Polymers(Basel), 2022, 14(6): 1181. [60] PANDEY D N, BASU A, KUMAR P. Electromagnetic shielding performance of copper and silver-plated hybrid yarn based multilayer fabrics in C & X band frequency range[J]. Journal of Industrial Textiles, 2021: 15280837 21999361. [61] LI S, QIAN K P, THAIBOONROD S, et al. Flexible multilayered aramid nanofiber/silver nanowire films with outstanding thermal durability for electromagnetic interference shielding[J]. Composites Part a-Applied Science and Manufacturing, 2021, 151: 106643. [62] MILITKÝ J, K?EMENÁKOVÁ D, VENKATARAMAN M, et al. Exceptional electromagnetic shielding properties of lightweight and porous multifunctional layers[J]. ASC Applied Electronic Materials, 2020, 2(4): 1138-1144. |
[1] | 陈 雪, 于利静, 张昭华. 个体冷热调节服装的研究进展[J]. 现代纺织技术, 2024, 32(9): 28-37. |
[2] | 韩宾宾, 李伟, 薛阳彪, 郑敏. 1T相二硫化钨/碳化蚕丝导电织物的制备及其水伏发电性能[J]. 现代纺织技术, 2024, 32(8): 15-22. |
[3] | 王 勇, 乔启凡, 王宗乾, 李长龙, 王 炜. 氨纶预牵伸倍数对棉/氨纶/不锈钢丝包覆纱性能的影响#br#[J]. 现代纺织技术, 2024, 32(5): 32-40. |
[4] | 刘 琛, 杨凯璐, 陈明星, 王新亚, 张 威. 熔喷非织造材料制备及其应用研究进展[J]. 现代纺织技术, 2024, 32(5): 116-129. |
[5] | 程春芬, 潘佳俊, 唐孔科, 夏兆鹏, 刘志涛. B-PDA-G/PDMS导热绝缘材料的制备及应用[J]. 现代纺织技术, 2024, 32(4): 10-20. |
[6] | 李丽娜 , 高 峰, 王勇军, 陈文兴, 吕汪洋. 聚对苯二甲酸乙二醇酯中低聚物组成的双检测器色谱法分析[J]. 现代纺织技术, 2024, 32(4): 38-44. |
[7] | 梁小琴, 梁梨花, 朱尽顺, 马明月. ACQ、AIE聚合物纳米粒子发光性能及其在喷墨印花中的应用[J]. 现代纺织技术, 2024, 32(4): 84-92. |
[8] | 胡晓亭, 徐 磊, 李 楠. 基于(PEA)2PbBr4单晶的光致发光防伪织物标贴制备与性能[J]. 现代纺织技术, 2024, 32(3): 81-90. |
[9] | 龚向宇, 王 群, 赵文潇, 王际平. 基于金属有机框架的功能纺织品研究进展[J]. 现代纺织技术, 2024, 32(2): 40-49. |
[10] | 贾瑞, 郑海玲, 贾丽玲, 傅建聪, 彭志勤. 纺织品的人工加速铁矿化及其相关结构性能[J]. 现代纺织技术, 2024, 32(12): 38-47. |
[11] | 王嘉宁, 司苏求, 郑心怡, 刘玮. 碳纳米管质量分数对纳米芳纶复合气凝胶纤维电磁屏蔽性能的影响[J]. 现代纺织技术, 2024, 32(1): 64-72. |
[12] | 王可心, 高 峰, 王勇军, 陈文兴, 吕汪洋. 涤纶废丝的熔融增黏反应及其性能[J]. 现代纺织技术, 2024, 32(1): 73-79. |
[13] | 张 蕊, 郑莹莹, 董正梅, 张 婷, 沈利铭, 王 建, 邹专勇. 仿生设计在智能纺织品中的应用与研究进展[J]. 现代纺织技术, 2023, 31(6): 226-240. |
[14] | 谢金林, 张 京, 郭宇星, 赵志慧, 邱 华, 顾 鹏. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(6): 241-254. |
[15] | 陈帆, 金万慧, 王騊. 定向导水Janus复合棉织物制备及其凉感性能[J]. 现代纺织技术, 2023, 31(5): 190-197. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||