[1] TIAN X, LEE P M, TAN Y J, et al. Wireless body sensor networks based on metamaterial textiles[J]. Nature Electronics, 2019, 2(6) : 243-251.
[2] LEE J, LLERENA ZAMBRANO B , WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications [J].Advanced Materials , 2020, 32(5): 2070038.
[3] Chen M, LI P, WANG R, et al. Multifunctional fiber: Enabled intelligent health agents[J]. Advanced Materials, 2022, 34(52): 2200985.
[4] SOURI H, BHATTACHARYYA D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics[J]. ACS Applied Materials & Interfaces,2018, 10(24):20845-20853.
[5] WANG J, YANG W, LIU Z, et al. Ultra-fine self-powered interactive fiber electronics for smart clothing[J]. Nano Energy, 2023, 107: 108171.
[6] 王晓雷, 缪旭红, 孙婉. 针织间隔导电织物的压力电阻传感性能[J].丝绸, 2020,57(4):17-21.
WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing properties of knitted spacer conductive fabrics [J].Journal of Silk, 2020, 57(4):17-21.
[7] 牛丽, 刘青, 陈超余, 等. 仿生鳞片针织结构自供能传感织物的制备及其性能[J].纺织学报, 2023,44(2):135-142.
NIU Li, LIU Qing, CHEN Chaoyu, et al. Preparation and performance of self-powering knitted sensing fabric with bionic scales[J]. Journal of Textile Research, 2023, 44(2):135-142.
[8] 吴荣辉, 马丽芸, 张一帆, 等. 银纳米线涂层的编链结构纱线拉伸应变传感器[J].纺织学报, 2019,40(12):45-49.
WU Ronghui, MA Liyun, ZHANG Yifan, et al. Strain sensor based on silver nanowires coated yarn with chain stitch structure [J]. Journal of Textile Research, 2019,40(12):45-49.
[9] ATES H C, NGUYEN P Q, GONZALEZ-MACIA L, et al. End-to-end design of wearable sensors[J]. Nature Reviews Materials, 2022, 7(11): 887-907.
[10] MATSUHISA N, CHEN X, BAO Z, et al. Materials and structural designs of stretchable conductors[J]. Chemical Society Reviews, 2019, 48(11): 2946-2966.
[11] KUANG T, ZHANG M, CHEN F, et al. Creating poly(lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller[J]. Advanced Composites and Hybrid Materials, 2023, 6(1):1-12.
[12] KANOUN O, BOUHAMED A, RAMALINGAME R, et al. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors[J]. Sensors, 2021, 21(2);341.
[13] LIU L, SHEN Z, ZHANG X, et al. Highly conductive graphene/carbon black screen printing inks for flexible electronics[J]. Journal of Colloid And Interface Science, 2021, 582: 12-21.
[14] JANG S,KIM J , KIM D W, et al. Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads[J]. ACS Appl Mater Interfaces, 2019, 11(16) : 15079-15087.
[15] GUO X H, ZHAO Y, XU X, et al. Biomimetic flexible strain sensor with high linearity using double conducting layers [J]. Composites Science and Technology, 2021, 213:108908.
[16] CHOI J H, NOH J H, CHOI C. Highly elastically deformable coiled CNT/polymer fibers for wearable strain sensors and stretchable supercapacitors[J]. Sensors, 2023, 23(4):2359. https://doi.org/10.3390/s23042359
[17] HE Z, BYUN J H, ZHOU G, et al. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers[J]. Carbon, 2019, 146: 701-708.
[18] 蒲海红, 贺芃鑫, 宋柏青, 等. 纤维素/碳纳米管复合纤维的制备及其功能化应用 [J]. 纺织学报, 2023, 44(1) : 79-86.
PU Haihong, HE Pengxin, SONG Baiqing, et al. Preparation of cellulose /carbon nanotube composite fiber and its functional applications[J]. Journal of Textile Research, 2023, 44(1) : 79-86.
[19] 李东亮, 刘慧莹, 李乐乐, 等. SBS/CNTs弹性导电复合纤维的制备与性能[J].现代纺织技术, 2023, 31(3):121-127
LI Dongliang, LIU Huiying, LI lele, et al. Preparation and properties of SBS/CNTs elastic conductive composite fiber [J]. Advanced Textile Technology, 2023, 31(3): 121-127.
[20] WANG L, TIAN M, QI X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments[J]. Langmuir, 2021, 37(10): 3122-3129.
[21] HUANG T, HE P, WANG R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors [J]. Advanced Functional Materials, 2019, 29(45):1903732.https://doi.org/10.1002/adfm.201903732
[22] HASAN M M, HOSSAIN M M. Hasan M M, Hossain M M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review[J]. Journal of Materials Science, 2021, 56(27): 14900-14942.
[23] LU Y, JIANG J , YOON S, et al. High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning [J]. ACS Applied Materials & Interfaces, 2018, 10(2) : 2093-20104.
[24] ZHAO Y, DONG D , GONG S, et al. A moss‐inspired electroless gold‐coating strategy toward stretchable fiber conductors by dry spinning [J]. Advanced Electronic Materials, 2019, 5(1):1800462.
[25] TANG Y, GUO B, CRUZ M A, et al. Colorful conductive threads for wearable electronics: transparent Cu–Ag nanonets[J]. Advanced Science, 2022, 9(24): 2201111.
[26] KWON O S, SONG H S, PARK T H, et al. Conducting nanomaterial sensor using natural receptors [J]. Chemical reviews, 2019, 119(1) : 36-93.
[27] HUI Z, CHEN R, J CHANG J, et al. Solution-processed sensing textiles with adjustable sensitivity and linear detection range enabled by twisting structure [J]. ACS Applied Materials & Interfaces, 2020, 12(10) : 12155-12164.
[28] 陆赵情, 黄吉振, 李娇阳,等.一种ANF/CNT/PPy气凝胶纤维传感器及其制备方法和应用:CN114438617A[P]. 2022-05-06.
LU Zhaoqing, HAUNG Jizhen, LI Jiaoyang, et al. An ANF/CNT/PPy aerogel fiber sensor and its preparation method and application: CN114438617A[P]. 2022-05-06.
[29] 吴颖欣, 胡铖烨, 周筱雅, 等. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能 [J]. 纺织学报, 2020, 41(4) : 21-25.
WU Yingxin, HU Chengye, ZHOU Xiaoya, et al. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(4) : 21-25.
[30] ZHAI W, LI X, XIA Q, et al. Multi-functional and flexible helical fiber sensor for micro-deformation detection, temperature sensing and ammonia gas monitoring [J]. Composites Part B: Engineering, 2021, 211: 108621.
[31] 王新月. PEDOT:PSS/PVA导电纤维的制备及性能研究 [D]. 无锡:江南大学, 2020:80-81.
WANG Xinyue. Study on Preparation and Properties of PEDOT:PSS/PVA Conductive Fiber[D]. Wuxi: Jiangnan University, 2020:80-81.
[32] SEYEDIN S, RAZAL J M, INNIS P C, et al. Knitted strain sensor textiles of highly conductive all-polymeric fibers [J]. ACS Applied Materials & Interfaces, 2015, 7(38) : 21150-21158.
[33] ALSHABOUNA F, LEE H S, BARANDUN G, et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery [J]. Materials Today, 2022, 59: 56-67.
[34] LI Y, ZHENG C, LIU S, et al. Smart glove integrated with tunable MWNTs/PDMS fibers made of a one-step extrusion method for finger dexterity, gesture, and temperature recognition [J]. ACS Applied Materials & Interfaces, 2020, 12(21) : 23764-23773.
[35] JIN C, LIU D, LI M, et al. Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(6) : 4788-4796.
[36] 梁家豪, 巫莹柱, 刘海东, 等. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能 [J]. 纺织学报, 2021, 42(6) : 63-70.
LIANG Jiahao, WU Yingzhu, LIU Haidong, et al. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of graphene [J]. Journal of Textile Research, 2021, 42(6) : 63-70.
[37] CHEN G, WANG H, GUO R, et al. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics [J]. ACS Applied Materials & Interfaces, 2020, 12(5) : 6112-61128.
[38] 张宁仪, 王潮霞. 纳米银颗粒-聚氨酯导电纤维的制备及拉伸传感应用 [J]. 精细化工, 2022, 39(6) : 1170-1177.
ZHANG Ningyi, WANG Chaoxia. Preparation of AgNPs-polyurethane conductive fiber and its application in tension sensing [J]. Fine Chemicals, 2022, 39(6): 1170-1177.
[39] 郑贤宏, 胡侨乐, 聂文琪,等. 高弹性MXene/TPU纳米纤维纱线的制备及其应变传感性能 [J]. 精细化工,2022,39(1):80-85.
ZHENG Xianhong, HU Qiaole, NIE Wenqi, et al. Preparation and strain sensing performance of high stretchable MXene/TPU Nanofiber Yarn [J]. Fine Chemicals, 2022, 39(1):80-85.
[40] MA Z J, HUANG Q Y, ZHOU N J, et al. Stretchable and conductive fibers fabricated by a continuous method for wearable devices [J]. Cell Reports Physical Science, 2023, 4(3):101300.
[41] Jamatia T, Matyas J, Olejnik R, et al. Wearable and Stretchable SEBS/CB polymer conductive strand as a piezoresistive strain sensor[J]. Polymers, 2023, 15(7): 1618.
[42] ZHAO R, HE Y , HE Y, et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection [J]. ACS Applied Materials & Interfaces, 2023, 15(12) : 16063-16071.
[43] WU X,HAN Y , ZHANG X, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@Polyurethane yarn for tiny motion monitoring [J]. ACS Applied Materials & Interfaces, 2016, 8(15) : 9936-9945.
[44] XIE X, HUANG H, ZHU J, et al. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor [J]. Composites Part A: Applied Science and Manufacturing, 2020, 135:105932.https://doi.org/10.1016/j.compositesa.2020.105932
[45] QIN Y, QU M, PAN Y, et al. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing [J]. Composites Part A: Applied Science and Manufacturing, 2020, 129:105724.https://doi.org/10.1016/j.compositesa.2019.105724
[46] ZHANG S C, XU J T. PDMS/Ag/mxene/polyurethane conductive yarn as a highly reliable and stretchable strain sensor for human motion monitoring [J]. Polymers, 2022, 14(24):5041.
[47] NIU B, YANG S, YANG Y, et al. Highly conductive fiber with design of dual conductive Ag/CB layers for ultrasensitive and wide‐range strain sensing [J]. SmartMat, 2023: e1178.https://doi.org/10.1002/smm2.1178
[48] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles [J]. Advanced Functional Materials, 2020, 30(12):1910504.
[49] ZHANG Y, LI X, KIM J, et al. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing [J]. Advanced Optical Materials, 2021, 9(6): 2001815.
[50] MARION J S, GUPTA N, CHEUNG H , et al. Thermally drawn highly conductive fibers with controlled elasticity [J].Advanced Materials , 2022, 34(19) : e2201081.
[51] QI K, WANG H, YOU X, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity [J]. Journal of Colloid and Interface Science, 2020, 561: 93-103.
[52] GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor [J]. ACS Nano, 2020, 14(3) : 3442-3450.
[53] LU L, ZHOU Y, PAN J, et al. Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability [J]. ACS Applied Materials & Interfaces, 2019, 11(4) : 4345-4352.
[54] ZHAO Z Z, HUANG Q Y,YAN C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies[J]. Nano Energy, 2020, 70: 104528.
|