现代纺织技术 ›› 2024, Vol. 32 ›› Issue (2): 27-39.
收稿日期:
2023-07-16
出版日期:
2024-02-10
网络出版日期:
2024-03-12
作者简介:
岳欣琰(2000—),女,山东菏泽人,硕士研究生,主要从事智能服装柔性器件方面的研究。
基金资助:
Received:
2023-07-16
Published:
2024-02-10
Online:
2024-03-12
摘要: 随着智能可穿戴技术的发展,人们对智能化、多功能、易携带的可穿戴设备需求日益增长,可穿戴柔性传感器受到广泛关注并逐渐成为柔性电子领域的研究热点。一维结构柔性传感器具备优异适形性、高集成度和性能稳定等优势,有助于开发高性能、可连续生产、多场景应用的可穿戴柔性电子产品。文章分析了用于一维结构穿戴柔性传感器的导电敏感材料和柔性基底材料,对一维结构穿戴柔性传感器的制备工艺进行划分,从表面涂层、纤维制备以及结构变化方面总结了各种一维结构穿戴柔性传感器的设计和应用。文章讨论了一维结构柔性传感器当前研究中需要突破的工作,对其在可穿戴应用领域的发展前景提出展望,为相关可穿戴柔性器件的研究提供理论价值和工程参考意义。
中图分类号:
岳欣琰, 洪剑寒. 一维结构可穿戴柔性传感器研究进展[J]. 现代纺织技术, 2024, 32(2): 27-39.
YUE Xinyana, HONG Jianhana, b . Research progress on wearable flexible sensors with one-dimensional structure[J]. Advanced Textile Technology, 2024, 32(2): 27-39.
[1] TIAN X, LEE P M, TAN Y J, et al. Wireless body sensor networks based on metamaterial textiles[J]. Nature Electronics, 2019, 2(6) : 243-251. [2] LEE J, LLERENA ZAMBRANO B , WOO J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications [J].Advanced Materials , 2020, 32(5): 2070038. [3] Chen M, LI P, WANG R, et al. Multifunctional fiber: Enabled intelligent health agents[J]. Advanced Materials, 2022, 34(52): 2200985. [4] SOURI H, BHATTACHARYYA D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics[J]. ACS Applied Materials & Interfaces,2018, 10(24):20845-20853. [5] WANG J, YANG W, LIU Z, et al. Ultra-fine self-powered interactive fiber electronics for smart clothing[J]. Nano Energy, 2023, 107: 108171. [6] 王晓雷, 缪旭红, 孙婉. 针织间隔导电织物的压力电阻传感性能[J].丝绸, 2020,57(4):17-21. WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing properties of knitted spacer conductive fabrics [J].Journal of Silk, 2020, 57(4):17-21. [7] 牛丽, 刘青, 陈超余, 等. 仿生鳞片针织结构自供能传感织物的制备及其性能[J].纺织学报, 2023,44(2):135-142. NIU Li, LIU Qing, CHEN Chaoyu, et al. Preparation and performance of self-powering knitted sensing fabric with bionic scales[J]. Journal of Textile Research, 2023, 44(2):135-142. [8] 吴荣辉, 马丽芸, 张一帆, 等. 银纳米线涂层的编链结构纱线拉伸应变传感器[J].纺织学报, 2019,40(12):45-49. WU Ronghui, MA Liyun, ZHANG Yifan, et al. Strain sensor based on silver nanowires coated yarn with chain stitch structure [J]. Journal of Textile Research, 2019,40(12):45-49. [9] ATES H C, NGUYEN P Q, GONZALEZ-MACIA L, et al. End-to-end design of wearable sensors[J]. Nature Reviews Materials, 2022, 7(11): 887-907. [10] MATSUHISA N, CHEN X, BAO Z, et al. Materials and structural designs of stretchable conductors[J]. Chemical Society Reviews, 2019, 48(11): 2946-2966. [11] KUANG T, ZHANG M, CHEN F, et al. Creating poly(lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller[J]. Advanced Composites and Hybrid Materials, 2023, 6(1):1-12. [12] KANOUN O, BOUHAMED A, RAMALINGAME R, et al. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors[J]. Sensors, 2021, 21(2);341. [13] LIU L, SHEN Z, ZHANG X, et al. Highly conductive graphene/carbon black screen printing inks for flexible electronics[J]. Journal of Colloid And Interface Science, 2021, 582: 12-21. [14] JANG S,KIM J , KIM D W, et al. Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads[J]. ACS Appl Mater Interfaces, 2019, 11(16) : 15079-15087. [15] GUO X H, ZHAO Y, XU X, et al. Biomimetic flexible strain sensor with high linearity using double conducting layers [J]. Composites Science and Technology, 2021, 213:108908. [16] CHOI J H, NOH J H, CHOI C. Highly elastically deformable coiled CNT/polymer fibers for wearable strain sensors and stretchable supercapacitors[J]. Sensors, 2023, 23(4):2359. https://doi.org/10.3390/s23042359 [17] HE Z, BYUN J H, ZHOU G, et al. Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers[J]. Carbon, 2019, 146: 701-708. [18] 蒲海红, 贺芃鑫, 宋柏青, 等. 纤维素/碳纳米管复合纤维的制备及其功能化应用 [J]. 纺织学报, 2023, 44(1) : 79-86. PU Haihong, HE Pengxin, SONG Baiqing, et al. Preparation of cellulose /carbon nanotube composite fiber and its functional applications[J]. Journal of Textile Research, 2023, 44(1) : 79-86. [19] 李东亮, 刘慧莹, 李乐乐, 等. SBS/CNTs弹性导电复合纤维的制备与性能[J].现代纺织技术, 2023, 31(3):121-127 LI Dongliang, LIU Huiying, LI lele, et al. Preparation and properties of SBS/CNTs elastic conductive composite fiber [J]. Advanced Textile Technology, 2023, 31(3): 121-127. [20] WANG L, TIAN M, QI X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments[J]. Langmuir, 2021, 37(10): 3122-3129. [21] HUANG T, HE P, WANG R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors [J]. Advanced Functional Materials, 2019, 29(45):1903732.https://doi.org/10.1002/adfm.201903732 [22] HASAN M M, HOSSAIN M M. Hasan M M, Hossain M M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review[J]. Journal of Materials Science, 2021, 56(27): 14900-14942. [23] LU Y, JIANG J , YOON S, et al. High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning [J]. ACS Applied Materials & Interfaces, 2018, 10(2) : 2093-20104. [24] ZHAO Y, DONG D , GONG S, et al. A moss‐inspired electroless gold‐coating strategy toward stretchable fiber conductors by dry spinning [J]. Advanced Electronic Materials, 2019, 5(1):1800462. [25] TANG Y, GUO B, CRUZ M A, et al. Colorful conductive threads for wearable electronics: transparent Cu–Ag nanonets[J]. Advanced Science, 2022, 9(24): 2201111. [26] KWON O S, SONG H S, PARK T H, et al. Conducting nanomaterial sensor using natural receptors [J]. Chemical reviews, 2019, 119(1) : 36-93. [27] HUI Z, CHEN R, J CHANG J, et al. Solution-processed sensing textiles with adjustable sensitivity and linear detection range enabled by twisting structure [J]. ACS Applied Materials & Interfaces, 2020, 12(10) : 12155-12164. [28] 陆赵情, 黄吉振, 李娇阳,等.一种ANF/CNT/PPy气凝胶纤维传感器及其制备方法和应用:CN114438617A[P]. 2022-05-06. LU Zhaoqing, HAUNG Jizhen, LI Jiaoyang, et al. An ANF/CNT/PPy aerogel fiber sensor and its preparation method and application: CN114438617A[P]. 2022-05-06. [29] 吴颖欣, 胡铖烨, 周筱雅, 等. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能 [J]. 纺织学报, 2020, 41(4) : 21-25. WU Yingxin, HU Chengye, ZHOU Xiaoya, et al. Strain sensing property of flexible wearable spandex/polyaniline/polyurethane composites [J]. Journal of Textile Research, 2020, 41(4) : 21-25. [30] ZHAI W, LI X, XIA Q, et al. Multi-functional and flexible helical fiber sensor for micro-deformation detection, temperature sensing and ammonia gas monitoring [J]. Composites Part B: Engineering, 2021, 211: 108621. [31] 王新月. PEDOT:PSS/PVA导电纤维的制备及性能研究 [D]. 无锡:江南大学, 2020:80-81. WANG Xinyue. Study on Preparation and Properties of PEDOT:PSS/PVA Conductive Fiber[D]. Wuxi: Jiangnan University, 2020:80-81. [32] SEYEDIN S, RAZAL J M, INNIS P C, et al. Knitted strain sensor textiles of highly conductive all-polymeric fibers [J]. ACS Applied Materials & Interfaces, 2015, 7(38) : 21150-21158. [33] ALSHABOUNA F, LEE H S, BARANDUN G, et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery [J]. Materials Today, 2022, 59: 56-67. [34] LI Y, ZHENG C, LIU S, et al. Smart glove integrated with tunable MWNTs/PDMS fibers made of a one-step extrusion method for finger dexterity, gesture, and temperature recognition [J]. ACS Applied Materials & Interfaces, 2020, 12(21) : 23764-23773. [35] JIN C, LIU D, LI M, et al. Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(6) : 4788-4796. [36] 梁家豪, 巫莹柱, 刘海东, 等. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能 [J]. 纺织学报, 2021, 42(6) : 63-70. LIANG Jiahao, WU Yingzhu, LIU Haidong, et al. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of graphene [J]. Journal of Textile Research, 2021, 42(6) : 63-70. [37] CHEN G, WANG H, GUO R, et al. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics [J]. ACS Applied Materials & Interfaces, 2020, 12(5) : 6112-61128. [38] 张宁仪, 王潮霞. 纳米银颗粒-聚氨酯导电纤维的制备及拉伸传感应用 [J]. 精细化工, 2022, 39(6) : 1170-1177. ZHANG Ningyi, WANG Chaoxia. Preparation of AgNPs-polyurethane conductive fiber and its application in tension sensing [J]. Fine Chemicals, 2022, 39(6): 1170-1177. [39] 郑贤宏, 胡侨乐, 聂文琪,等. 高弹性MXene/TPU纳米纤维纱线的制备及其应变传感性能 [J]. 精细化工,2022,39(1):80-85. ZHENG Xianhong, HU Qiaole, NIE Wenqi, et al. Preparation and strain sensing performance of high stretchable MXene/TPU Nanofiber Yarn [J]. Fine Chemicals, 2022, 39(1):80-85. [40] MA Z J, HUANG Q Y, ZHOU N J, et al. Stretchable and conductive fibers fabricated by a continuous method for wearable devices [J]. Cell Reports Physical Science, 2023, 4(3):101300. [41] Jamatia T, Matyas J, Olejnik R, et al. Wearable and Stretchable SEBS/CB polymer conductive strand as a piezoresistive strain sensor[J]. Polymers, 2023, 15(7): 1618. [42] ZHAO R, HE Y , HE Y, et al. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection [J]. ACS Applied Materials & Interfaces, 2023, 15(12) : 16063-16071. [43] WU X,HAN Y , ZHANG X, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@Polyurethane yarn for tiny motion monitoring [J]. ACS Applied Materials & Interfaces, 2016, 8(15) : 9936-9945. [44] XIE X, HUANG H, ZHU J, et al. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor [J]. Composites Part A: Applied Science and Manufacturing, 2020, 135:105932.https://doi.org/10.1016/j.compositesa.2020.105932 [45] QIN Y, QU M, PAN Y, et al. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing [J]. Composites Part A: Applied Science and Manufacturing, 2020, 129:105724.https://doi.org/10.1016/j.compositesa.2019.105724 [46] ZHANG S C, XU J T. PDMS/Ag/mxene/polyurethane conductive yarn as a highly reliable and stretchable strain sensor for human motion monitoring [J]. Polymers, 2022, 14(24):5041. [47] NIU B, YANG S, YANG Y, et al. Highly conductive fiber with design of dual conductive Ag/CB layers for ultrasensitive and wide‐range strain sensing [J]. SmartMat, 2023: e1178.https://doi.org/10.1002/smm2.1178 [48] SEYEDIN S, UZUN S, LEVITT A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles [J]. Advanced Functional Materials, 2020, 30(12):1910504. [49] ZHANG Y, LI X, KIM J, et al. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing [J]. Advanced Optical Materials, 2021, 9(6): 2001815. [50] MARION J S, GUPTA N, CHEUNG H , et al. Thermally drawn highly conductive fibers with controlled elasticity [J].Advanced Materials , 2022, 34(19) : e2201081. [51] QI K, WANG H, YOU X, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity [J]. Journal of Colloid and Interface Science, 2020, 561: 93-103. [52] GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor [J]. ACS Nano, 2020, 14(3) : 3442-3450. [53] LU L, ZHOU Y, PAN J, et al. Design of helically double-leveled gaps for stretchable fiber strain sensor with ultralow detection limit, broad sensing range, and high repeatability [J]. ACS Applied Materials & Interfaces, 2019, 11(4) : 4345-4352. [54] ZHAO Z Z, HUANG Q Y,YAN C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies[J]. Nano Energy, 2020, 70: 104528. |
[1] | 赵世康, 王 航, 田明伟. 平行电极式电致发光纱线的构筑成型及其水上救援可穿戴应用[J]. 现代纺织技术, 2024, 32(4): 45-51. |
[2] | 崔瑞祺, 商元元, 李娟鹃, 张浩, 史宝会, 房宽峻. 石墨烯/聚丙烯腈皮芯结构纤维成型构筑及功能性[J]. 现代纺织技术, 2024, 32(12): 1-9. |
[3] | 黎顺洋, 诸葛承耀, 吕汪洋, 李楠. 可控交联PVA导电水凝胶织物柔性传感器的制备与性能[J]. 现代纺织技术, 2024, 32(11): 35-45. |
[4] | 谢金林, 张 京, 郭宇星, 赵志慧, 邱 华, 顾 鹏. 导电纤维在新型纺织品中的应用进展[J]. 现代纺织技术, 2023, 31(6): 241-254. |
[5] | 王寅, 丁新波, 刘涛, 仇巧华, 王艳敏. 基于丝素/MXene复合纳米纤维柔性薄膜的制备及其导电性能[J]. 现代纺织技术, 2023, 31(4): 63-73. |
[6] | 房翔敏, 曲丽君, 田明伟. 绒面织物基摩擦电式压力传感器的制备及其应用[J]. 现代纺织技术, 2023, 31(4): 183-191. |
[7] | 李东亮, 刘慧莹, 李乐乐, 孙保杰, 江亮, 周彦粉, 陈韶娟, 马建伟. SBS/CNTs弹性导电复合纤维的制备与性能[J]. 现代纺织技术, 2023, 31(3): 121-127. |
[8] | 尹云雷, 郭成, 杨红英, 李虹, 王政. 电子织物在智能可穿戴领域的研究进展[J]. 现代纺织技术, 2023, 31(1): 1-12. |
[9] | 朱诗倩, 谈伊妮, 刘晓刚. 柔性复合导电纤维在智能纺织品中的研究进展[J]. 现代纺织技术, 2022, 30(4): 1-11. |
[10] | 马美静,刘丽妍,高新华,刘皓. 基于新型材料的柔性生物电干电极的研究进展[J]. 现代纺织技术, 2021, 29(4): 18-26. |
[11] | 刘津池,于淼,王侠. 摩擦纳米发电机在织物基智能可穿戴中的应用[J]. 现代纺织技术, 2020, 28(4): 53-63. |
[12] | 戴忆凡,陈慰来,王金凤,王键强,钟斌悦. 集成柔性传感器无缝内衣原料与尺寸设计[J]. 现代纺织技术, 2020, 28(1): 42-46. |
[13] | 蔡倩文,陈慰来,王金凤. 洗涤及热定型对柔性传感器导电性能的影响[J]. 现代纺织技术, 2017, 25(1): 23-27. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 202
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 724
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||