摘要: 为了更好地了解基于金属有机框架的功能纺织品研究现状,阐述了在织物表面构建金属有机框架结构,以赋予纺织品独特的功能特性;总结了现阶段基于金属有机框架的功能纺织品的主要制备方法,结合构建自粗糙结构和疏水剂整理,获得具有超疏水性能的功能纺织品,该类纺织品在自清洁、抗菌抗紫外、抗化学污染、油水分离和传感器领域具有潜在的应用价值;最后提出了基于金属有机框架的功能纺织品在实际应用中存在的不足,讨论了低成本制备稳定性良好的多功能纺织品的发展方向,为实现开发可持久的、高值化利用的多功能纺织品提供参考。
中图分类号:
龚向宇, 王 群, 赵文潇, 王际平. 基于金属有机框架的功能纺织品研究进展[J]. 现代纺织技术, 2024, 32(2): 40-49.
[1] Shan H, Pan Q W, Xiang C J, et al. High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane[J]. Cell Reports Physical Science, 2021, 2(12):100664. [2] Cao C, Ge M, Huang J, et al. Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation[J]. Journal of Materials Chemistry A, 2016, 4(31):12179-12187. [3] Li W L, Wang H P, Li Z X. Preparation of golf ball-shaped microspheres with fluorinated polycaprolactone via single-solvent electrospraying for superhydrophobic coatings[J]. Progress in Organic Coatings, 2019, 131:276-284. [4] Xiang F, Zong Y K, Chen M Q, et al. Preparation of super-hydrophobic cotton fabrics with the controllable roughening fiber surface by carbene polymerization grafting[J]. Progress in Organic Coatings, 2022, 163:106635. [5] Cheng Y, Zhu T X, Li S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355:290-298. [6] Li W, Wang H, Li Z. Hierarchical structure microspheres of PCL block copolymers via electrospraying as coatings for fabric with mechanical durability and self-cleaning ability[J]. Polymers for Advanced Technologies, 2019, 30(9):2321-2330. [7] Li W L, Wang X T, Wu Y, et al. One-step spontaneous grafting via diazonium chemistry for the fabrication of robust bionic multifunctional superhydrophobic fabric[J]. Surface and Coatings Technology, 2021, 407:126802. [8] Troyano J, Carné-Sánchez A, Avci C, et al. Colloidal metal-organic framework particles: The pioneering case of ZIF-8[J]. Chemical Society Reviews, 2019, 48(23):5534-5546. [9] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. [10] Perez E, Karunaweera C, Musselman I,et al. Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations[J]. Processes, 2016, 4(3):32. [11] Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2):1105-1125. [12] Tan Y X, He Y P, Zhang J A. Tuning MOF stability and porosity via adding rigid pillars[J]. Inorganic Chemistry, 2012, 51(18):9649-9654. [13] Wang S B, Wang X C. Multifunctional metal-organic frameworks for photocatalysis[J]. Small, 2015, 11(26):3097-3112. [14] Zhang L Y, Chen H, Bai X J, et al. Fabrication of 2D metal-organic framework nanosheet@fiber composites by spray technique[J]. Chemical Communications, 2019, 55(57):8293-8296. [15] Liu D D, Liu X M, Fang K J, et al. Synergistic effect of MOFs and PMHS on robust cotton fabric for promoted hydrophobic and UV-resistance[J]. Chemical Engineering Journal, 2023,457:141319. [16] Abdelhameed R M, Abdel-Gawad H, Elshahat M, et al. Cu-BTC@cotton composite: Design and removal of ethion insecticide from water[J]. RSC Advances, 2016, 6(48):42324-42333. [17] Chen Z J, Ma K K, Mahle J J, et al. Integration of metal–organic frameworks on protective layers for destruction of nerve agents under relevant conditions[J]. Journal of The American Chemical Society, 2019, 141(51):20016-20021. [18] 李万新. 纺织品表面辐射接枝金属有机框架化合物的研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015: 17-20 LI Wanxin. Research on Radiation Grafting of Metal-organic Framework Compounds on Textile Surfaces[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2015: 17-20 [19] 张清华, 甘锋, 李琇廷, 等. 一种聚酰亚胺织物表面辐射接枝金属有机框架的方法, CN201711067706.X[P]. 2020-08-04. Zhang Qinghua, Gan Feng, Li Xiuyan, et al. A method of radiation grafting metal organic framework on the surface of polyimide fabric, CN201711067706.X[P]. 2020-08-04. [20] Li D k, Guo Z g. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance[J]. Applied Surface Science, 2018, 443:548-557. [21] Zhang K, Huo Q a, Zhou Y Y, et al. Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(19):17368-17374. [22] Nie X l, Wu S l, Mensah A, et al. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy[J]. Journal of Colloid and Interface Science, 2020, 579:233-242. [23] Emam H E, Abdelhameed R M. In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide)[J]. Journal of Porous Materials, 2017, 24(5):1175-1185. [24] Lu L, Hu C, Zhu Y j, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework[J]. Cellulose, 2018, 25(7):4223-4238. [25] Li W l, Zhang Y x, Yu Z, et al. In situ growth of a stable metal–organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications[J]. ACS Nano, 2022, 16(9):14779-14791. [26] Zhang Z b, Zhao J w, Lei Y q, et al. Preparation of intricate nanostructures on 304 stainless steel surface by SiO2-assisted HF etching for high superhydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124287. [27] Liu Y y, Tang J, Wang R h, et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles[J]. Journal of Materials Chemistry, 2007, 17(11):1071-1078. [28] YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of The Royal Society of London, 1805,95: 65-87. [29] Zhang Y f, Zhang L q, Xiao Z, et al. Fabrication of robust and repairable superhydrophobic coatings by an immersion method[J]. Chemical Engineering Journal, 2019, 369:1-7. [30] Wang J r, Wang X f, Zhao S, et al. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion[J]. Separation and Purification Technology, 2020, 235:116166. [31] Yang Y y, Guo Z p, Huang W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric[J]. Applied Surface Science, 2020, 503:144079. [32] Yang Y y, Huang W, Guo Z p, et al. Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation[J]. Cellulose, 2019, 26(17):9335-9348. [33] Zhao Y m, Liu E z, Fan J, et al. Superhydrophobic PDMS/wax coated polyester textiles with self-healing ability via inlaying method[J]. Progress in Organic Coatings, 2019, 132:100-107. [34] Chen S s, Li X a, Li Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4):4070-4076. [35] Li R, Chen T t, Pan X l. Metal-organic-framework-based materials for antimicrobial applications[J]. ACS Nano, 2021, 15(3): 3808-3848. [36] Liang S, Wu X L, Xiong J, et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review[J]. Coordination Chemistry Reviews, 2020, 406: 213149. [37] Rezaee R, Montazer M, Mianehro A, et al. Single-step synthesis and characterization of Zr-MOF onto wool fabric: Preparation of antibacterial wound dressing with high absorption capacity[J]. Fibers and Polymers, 2022, 23(2):404-412. [38] Teo W L, Liu J, Zhou W, et al. Facile preparation of antibacterial MOF‐fabric systems for functional protective wearables[J]. SmartMat, 2021, 2(4):567-578. [39] Ma K k, Cheung Y H, Xie H m, et al. Zirconium-based Metal-organic frameworks as reusable antibacterial peroxide carriers for protective textiles[J]. Chemistry of Materials, 2023, 35(6):2342-2352. [40] 范雪荣. 纺织品染整工艺学[M]. 2版.北京: 中国纺织出版社, 2006:356. Fan Xuerong. Textile Dyeing and Finishing Technology[M]. Version 2. Beijing: China Textile & Apparel Press, 2006:356. [41] Zhang K, Yang Z, Mao X e, et al. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction[J]. ACS Applied Materials & Interfaces, 2020, 12(49):55316-55323. [42] Jhinjer H S, Singh A, Bhattacharya S, et al. Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air[J]. Journal of Hazardous Materials, 2021, 411:125056. [43] Zhang X l, Sun Y x, Liu Y f, et al. UiO-66-NH2 fabrics: Role of trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants[J]. ACS Applied Materials & Interfaces, 2021, 13(33):39976-39984. [44] Ma K k, Islamoglu T, Chen Z j, et al. Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber[J]. Journal of the American Chemical Society, 2019, 141(39):15626-15633. [45] Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31):16025-16058. [46] Shi M b, Huang R l, Qi W, et al. Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602:125102. [47] Zhang G h, Liu Y, Chen C, et al. MOF-based cotton fabrics with switchable superwettability for oil-water separation[J]. Chemical Engineering Science, 2022, 256:117695. [48] Li H, Luo Y d, Yu F y, et al. In-situ construction of MOFs-based superhydrophobic/superoleophilic coating on filter paper with self-cleaning and antibacterial activity for efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625:126976. [49] Kim J, Khan S, Wu P, et al. Self-charging wearables for continuous health monitoring[J]. Nano Energy, 2021, 79: 105419. [50] Zhu T x, Ni Y m, Zhao K y, et al. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming[J]. ACS nano, 2022, 16(11): 18018-18026. [51] Yang G L, Jiang X L, Xu H, et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327. [52] Zhu G J, Ren P G, Guo H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(26):23649-23658. [53] Sun C c, Wang W k, Mu X y, et al. Efficiently regulating the electrical properties of flexible fabric-based Cu3(BTC)2 thin film by introducing various guest molecules[J]. Advanced Materials Interfaces, 2022, 9(3):2101810. [54] Liu J b, Shang Y h, Xu J q, et al. A novel electrochemical immunosensor for carcinoembryonic antigen based on Cu-MOFs-TB/polydopamine nanocarrier[J]. Journal of Electroanalytical Chemistry, 2020, 877:114563. [55] He B s, Dong X z. Nb. BbvCI powered DNA walking machine-based Zr-MOFs-labeled electrochemical aptasensor using Pt@ AuNRs/Fe-MOFs/PEI-rGO as electrode modification |
[1] | 邵明军, 蹇玉兰, 三福华, 柴希娟, 解林坤. 棉织物表面耐久超双疏涂层的制备方法及其性能[J]. 现代纺织技术, 2024, 32(2): 112-120. |
[2] | 张 蕊, 郑莹莹, 董正梅, 张 婷, 沈利铭, 王 建, 邹专勇. 仿生设计在智能纺织品中的应用与研究进展[J]. 现代纺织技术, 2023, 31(6): 226-240. |
[3] | 陈帆, 金万慧, 王騊. 定向导水Janus复合棉织物制备及其凉感性能[J]. 现代纺织技术, 2023, 31(5): 190-197. |
[4] | 马腾, 刘国金, 金万慧, 朱海霖, 雷彩虹. 共价有机框架膜材料的制备及其在水处理中的应用进展[J]. 现代纺织技术, 2023, 31(1): 269-284. |
[5] | 邱心妮, 郭韫淇, 张楠涛, 王欣, 石嘉威, 区嘉雨, 李泳, 余传明. 气相沉积法构筑的超疏水化妆棉及其油水分离性能[J]. 现代纺织技术, 2022, 30(6): 157-165. |
[6] | 谭卫, 马明波, 周文龙. 基于纳米Cs0.33WO3的自清洁多功能棉织物的制备及其性能[J]. 现代纺织技术, 2022, 30(5): 213-221. |
[7] | 易雯, 陈逸菲, 赵明明, 闫涛, 潘志娟. 导电复合纱基柔性电阻式应变传感器的研究进展[J]. 现代纺织技术, 2022, 30(4): 12-23. |
[8] | 石敏, 王騊, 王晟. 快速油-水分离用PVDF/PDMS超疏水膜的一步法制备及性能[J]. 现代纺织技术, 2022, 30(4): 108-114. |
[9] | 王镕琛, 张一风, 段书霞, 石沛龙, 贾江换, 张恒. 液体非对称传输非织造材料的成型方法及其应用研究进展[J]. 现代纺织技术, 2022, 30(3): 13-22. |
[10] | 李慧慧, 王群, 贾伟科, 王际平. 多功能超疏水纺织品的制备及应用研究进展[J]. 现代纺织技术, 2022, 30(3): 39-46. |
[11] | 刘秀龙, 王云仪. 海藻纤维的制备及其在纺织服装中的应用研究进展[J]. 现代纺织技术, 2022, 30(1): 26-35. |
[12] | 王宗乾,何铠君,吴开明,鲍美璇,戚星星. 自清洁功能性纺织品研究进展[J]. 现代纺织技术, 2014, 0(01): 60-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||