[1] 崔萌,陈素英,殷文,等.基于虚拟试衣技术的服装设计与开发[J].毛纺科技,2020,48(6):58-61.
CUI Meng, CHEN Suying, YIN Wen, et al. Design and development of clothing based on virtual fitting technology[J]. Wool Textile Journal, 2020, 48(6): 58-61.
[2] 杨秀丽,谢子欣.基于3D虚拟试衣技术的服装可视化结构设计[J].针织工业,2023(2):70-74.
YANG Xiuli, XIE Zixin.Visualized structure design of clothing based on 3D virtual fitting technology[J]. Knitting Industries,2023(2):70-74.
[3] 薛萧昱,何佳臻,王敏.三维虚拟试衣技术在服装设计与性能评价中的应用进展[J].现代纺织技术,2023,31(2):12-22.
XUE Xiaoyu, HE Jiazhen, WANG Min. Application progress of 3Dvirtual fitting technology in fashion design and performance evaluation[J]. Advanced Textile Technology, 2023, 31(2):12-22.
[4] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] // Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2014: 2672-2680.
[5] MIRZA M, OSINDERO S. Conditional generative adversarial nets[C]//NIPS Proceedings of advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2014:5767-5777.
[6] JETCHEV N, BERGMANN U. The conditional analogy GAN: swapping fashion articles on people images[C]//2017 IEEE International Conference on Computer Vision Workshops (ICCVW). October 22-29, 2017, Venice, Italy. IEEE, 2018: 2287-2292.
[7] 张颖,刘成霞.生成对抗网络在虚拟试衣中的应用研究进展[J].丝绸,2021,58(12):63-72.
ZHANG Ying, LIU Chengxia. Research progress on the application of generative adversarial network in virtual fitting[J]. Journal of Silk, 2021,58(12):63-72.
[8] HAN X T, WU Z X, WU Z, et al. VITON: An image-based virtual try-on network[C]// Proceedings of 2018 IEEE/ CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA.IEEE,2018:7543-7552.
[9] WANG B C, ZHENG H B, LIANG X D, et al. Toward characteristic-preserving image-based virtual try-on network[C]// Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2018:607-623.
[10] MEN Y F, MAO Y M, JIANG Y N, et al. Controllable person image synthesis with attribute-decomposed GAN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 5083-5092.
[11] 张淑芳,王沁宇.基于生成对抗网络的虚拟试穿方法[J].天津大学学报(自然科学与工程技术版),2021,54(9):925-933.
ZHANG Shufang, WANG Qinyu. Generative-adversarial-network-based virtual try-on method[J]. Journal of Tianjin University (Science and Technology),2021,54(9): 925-933.
[12] ZHANG L M, RAO A Y, AGRAWALA M, Adding conditional control to text-to-image diffusion models[EB/OL](2023-09-02)[2023-10-15]. https://arxiv.org/abs/2302.05543.
[13] SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the 32nd International Conference on Machine Learning - Volume 37. July 6 - 11, 2015, Lille, France. New York,NY:ACM,2015:2256-2265.
[14] SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution[EB/OL]. (2020-10-10)[2023-7-23]ArXiv,2019:1907.05600. https://arxiv.org/abs/1907.05600.
[15] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. December 6 - 12, 2020, Vancouver, BC, Canada. New York: ACM, 2020: 6840-6851.
[16] DHARIWAL P, NICHOL A.Diffusion models beat GANs on image synthesis[JEB/OL]. 2021: arXiv: 2105.05233. https://arxiv.org/abs/2105.05233.
[17] ROMBACH R, BLATTMANN A,LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 10674-10685.
[18] 余青龙.AI绘画软件的创作特征研究:以绘画软件Novel AI生成的动漫人物形象为例[J].信阳师范学院学报(哲学社会科学版),2023,43(3):127-132.
YU Qinglong. A study of the creative features of AI drawing software: Exampled by anime characters generated by Novel AI[J]. Journal of Xinyang Normal University(Philosophy and Social Sciences Edition), 2023, 43(3):127-132.
[19] CANNY J.A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.
[20] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 1302-1310.
[21] 谭泽霖,白静.二维图像虚拟试衣技术综述[J].计算机工程与应用,2023,59(15):17-26.
TAN Zelin, BAI Jing. Survey of two-dimensional image virtual try-on technology[J]. Computer Engineering and Applications,2023, 59(15):17-26.
[22] 花爱玲,余锋,陈子宜,等.深度学习在二维虚拟试衣技术的应用与进展[J].计算机工程与应用,2023,59(11):37-45.
HUA Ailing, YU Feng, CHEN Ziyi, et al. Application and progress of deep learning in 2D virtual try-on technology[J]. Computer Engineering and Applications, 2023,59(11):37-45.
|