"[1]滕飞,张奇,曲建升,等.基于专利竞争力指数和Doc-LDA主题模型的关键核心技术识别研究:以新能源汽车为例[J].数据分析与知识发现,2024,8(11):33-46.
TENG F, ZHANG Q, QU J S, et al. Identifing key and core technologies based on patent competitiveness index and Doc-LDA topic model: Case study of e-vehicles[J]. Data Analysis and Knowledge Discovery, 2024, 8(11): 33-46.
[2]陈伟, 林超然, 孔令凯, 等. 基于专利文献挖掘的关键共性技术识别研究[J]. 情报理论与实践, 2020, 43(2): 92-99.
CHEN W, LIN C R, KONG L K, et al. Research on key generic technology identification based on text mining of patent document[J]. Information Studies: Theory & Application, 2020, 43(2): 92-99.
[3]佘敏楚楚, 管丽媛, 俞建勇, 等. 新质生产力驱动下纺织行业的创新发展与转型研究[J]. 东华大学学报(自然科学版), 2024, 50(5): 1-11.
SHE M C C, GUAN L Y, YU J Y, et al. Research on innovation development and transformation of textile industry driven by new quality productive forces[J]. Journal of Donghua University (Natural Science), 2024, 50(5): 1-11.
[4]方曦, 崔梁雨, 刘云. 基于专利特征的人工智能领域核心技术识别及发展趋势分析: 层次分析(AHP)-熵权法[J]. 科技管理研究, 2024, 44(2): 35-44.
FANG X, CUI L Y, LIU Y. Core technology identification and development trend analysis in the field of artificial intelligence based on patent characteristics: Analytic Hierarchy Process (AHP): Entropy weight method[J]. Science and Technology Management Research, 2024, 44(2): 35-44.
[5]马永红,孔令凯,林超然,等.基于专利挖掘的关键共性技术识别研究[J].情报学报,2020,39(10):1093-1103.
MA Y H, KONG L K, LIN C R, et al. Key generic technology identification based on patent mining[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(10): 1093-1103.
[6]BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[7]AMATO I. Re: Re: large language models (LLMs) in evaluation of emergency radiology reports: Performance of ChatGPT-4, perplexity, and bard[J]. Clinical Radiology, 2024, 79(7): 974.
[8]韩亚楠, 刘建伟, 罗雄麟. 概率主题模型综述[J]. 计算机学报, 2021, 44(6): 1095-1139.
HAN Y N, LIU J W, LUO X L. A survey on probabilistic topic model[J]. Chinese Journal of Computers, 2021, 44(6): 1095-1139.
[9]ZHOU J, YE Z, ZHANG S, et al. Investigating response behavior through TF-IDF and Word2Vec text analysis: A case study of PISA 2012 problem-solving process data[J]. Heliyon, 2024, 10(16): 35945.
[10]宋延红, 王志成. 部分状态可见的隐马尔可夫模型的Viterbi算法[J]. 数学学报(中文版), 2024, 67(3): 500-510.
SONG Y H, WANG Z C. Viterbi algorithms for hidden Markov models with partially visible states[J]. Acta Mathematica Sinica (Chinese Series), 2024, 67(3): 500-510.
[11]赵蓉英, 戴祎璠, 王旭. 基于LDA模型与ATM模型的学者影响力评价研究: 以我国核物理学科为例[J]. 情报科学, 2019, 37(6): 3-9.
ZHAO R Y, DAI Y F, WANG X. Scholar influence evaluation research based on LDA model and ATM model: A case study of nuclear physics in China[J]. Information Science, 2019, 37(6): 3-9.
[12]栾春娟. 战略性新兴产业共性技术测度指标实证研究[J]. 中国科技论坛, 2012(6): 73-77.
LUAN C J. Emperical study on the measuring indicators of generic technology of emerging industries of strategic importance[J]. Forum on Science and Technology in China, 2012(6): 73-77." |