"[1]杨媛媛,徐英莲,徐琳.利用丝胶固着技术改善蚕丝被性能研究[J].丝绸,2012,49(11):23-27.
YANG Y Y, XU Y L, XU L. The application of sericin fixing technology to improve performance of silk quilt[J]. Journal of Silk, 2012, 49(11): 23-27.
[2]曹石淼,包海峰.蚕丝增重处理技术及增重鉴别检测现状[J].纺织检测与标准, 2024,10(4):41-44.
CAO S M, BAO H F. Current status of silk weight gain treatment technology and weight gain identification test[J]. Textile Testing and Standard, 2024,10(4):41-44.
[3]SINGHA A S, KAPOOR H. Evaluation of physico-chemical properties of modified silk fiber[J]. Journal of Natural Fibers, 2015, 12(6): 604-616.
[4]王瑞. 接枝蚕丝的检测方法研究进展[J]. 中国纤检, 2024(1): 49-53.
WANG R. Research progress in the detection of grafted silk[J]. China Fiber Inspection, 2024(1): 49-53.
[5]孙晨晓, 李婷, 朱兰, 等. 探讨桑蚕丝与柞蚕丝在蚕丝增重检测中的区别[J]. 中国纤检, 2021(4): 54-57.
SUN C X, LI T, ZHU L, et al. Discussion on the differences of weight gain test method between mulberry silk and tussah silk[J]. China Fiber Inspection, 2021(4): 54-57.
[6]沈锦玉, 孙杰, 茅明华, 等. 蚕丝绵增重及鉴别方法探讨[J]. 纺织科技进展, 2020(1): 41-43.
SHEN J Y, SUN J, MAO M H, et al. Discussion on the weight gain and identification method of silk floss[J]. Progress in Textile Science & Technology, 2020(1): 41-43.
[7]PUSPITA S, SUNARINTYAS S, ANWAR C, et al. Amino acid identification of Bombyx mori fibroin cocoon as biomaterial using liquid chromatography/mass spectrometry[J]. BIO Web of Conferences, 2020, 28: 02001.
[8]范雅婷, 刘胜. 一种用于预测蚕丝含量占比的近红外光谱分析方法[J]. 红外, 2021, 42(1): 43-48.
FAN Y T, LIU S. A near infrared spectroscopy method for predicting the percentage of silk content[J]. Infrared, 2021, 42(1): 43-48.
[9]李婷, 孙晨晓, 朱兰, 等. 基于高效液相色谱法的桑蚕丝氨基酸定量分析及其增重鉴别的研究[J]. 江苏丝绸, 2021,50(2): 35-39.
LI T, SUN C X, ZHU L, et al. Quantitative analysis of amino acids in Mulberry Silk based on HPLC and Application in weighting detection[J]. Jiangsu Silk, 2021, 50(2): 35-39.
[10]王瑞, 司银松, 芦浩浩, 等. 基于近红外光谱法的桑蚕丝接枝率快速定量测定[J]. 纺织学报, 2022, 43(11): 29-34.
WANG R, SI Y S, LU H H, et al. Rapid quantitative detection of silk grafting ratio based on near infrared spectroscopy[J]. Journal of Textile Research, 2022, 43(11): 29-34.
[11]吴友日, 金肖克, 冯建强, 等. 基于高光谱成像技术的棉花杂质检测[J]. 现代纺织技术, 2024, 32(11): 46-54.
WU Y R, JIN X K, FENG J Q, et al. Detection of cotton impurities based on hyperspectral imaging technology[J]. Advanced Textile Technology, 2024, 32(11): 46-54.
[12]金肖克, 田伟, 朱炜婧, 等. 基于高光谱成像系统的纺织品成分定性鉴别[J]. 纺织学报, 2018, 39(10): 50-57.
JIN X K, TIAN W, ZHU W J, et al. Qualitative identification of textile chemical composition based on hyperspectral imaging system[J]. Journal of Textile Research, 2018, 39(10): 50-57.
[13]李佳平, 沈国康, 欧耀明, 等. 应用连续投影算法及最小二乘支持向量机的单组分纺织品识别[J]. 纺织学报, 2018, 39(8): 46-51.
LI J P, SHEN G K, OU Y M, et al. Single component textile identification based on continuous projection algorithm and least squares support vector machine[J]. Journal of Textile Research, 2018, 39(8): 46-51.
[14]孙艺博. 基于高光谱图像技术的涤棉织物定量鉴别模型及其可视化研究[D]. 杭州: 浙江理工大学, 2020.
SUN Y B. Quantitative identification model of polyester-cotton fabric based on hyperspectral image technology and its visualization research[D]. Hangzhou: Zhejiang Sci-Tech University, 2020.
[15]金航峰, 黄凌霞, 谢琳, 等. 桑蚕鲜茧干壳量的可见/近红外光谱无损检测[J]. 农业机械学报, 2013, 44(1): 147-151.
JIN H F, HUANG L X, XIE L, et al. Nondestructive detection of dry weight of cocoons layer of mulberry silkworm fresh cocoons using visible/near infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 147-151." |