"[1] KONAROVA M, BATALHA N, FRAGA G, et al. Integrating PET chemical recycling with pyrolysis of mixed plastic waste via pressureless alkaline depolymerization in a hydrocarbon solvent[J]. Waste Management, 2024, 174: 24-30.
[2] 刘志阳, 官军, 吕维扬, 等. 废弃聚酯的化学解聚技术及其高值化产品的研究进展[J]. 合成纤维工业, 2023, 46(1): 55-62.
LIU Z Y, GUAN J, LÜ W Y, et al. Research progress in chemical depolymerization technology of waste polyester and its high-value added products[J]. China Synthetic Fiber Industry, 2023, 46(1): 55-62.
[3] CHEN W, LI M, GU X, et al. Efficient glycolysis of recycling poly (ethylene terephthalate) via combination of organocatalyst and metal salt[J]. Polymer Degradation and Stability, 2022, 206: 110168.
[4] 朱子旭, 陈斌杰, 官军, 等. 基于醇解-酯交换法再生PET的固相缩聚[J]. 现代纺织技术, 2024, 32(9): 38-47.
ZHU Z X, CHEN B J, GUAN J, et al. Solid-state polycondensation of regenerated PET based on the alcoholysis-ester exchange method[J]. Advanced Textile Technology, 2024, 32(9): 38-47.
[5] CANO I, MARTIN C, FERNANDES J A, et al. Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles: The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET[J]. Applied Catalysis B: Environmental, 2020, 260: 118110.
[6] LI Y, LI K, LI M, et al. Zinc-doped ferrite nanoparticles as magnetic recyclable catalysts for scale-up glycolysis of poly (ethylene terephthalate) wastes[J]. Advanced Powder Technology, 2022, 33(3): 103444.
[7] 邢玉静, 严玉蓉, 吴松平, 等. PET解聚方法研究进展[J].合成纤维工业, 2020, 43(5):48-55.
XING Y J, YAN Y R, WU S P, et al. Research progress in depolymerization of PET[J]. China Synthetic Fiber Industry, 2020, 43(5):48-55.
[8] WANG Z, JIN Y, WANG Y, et al. Cyanamide as a highly efficient organocatalyst for the glycolysis recycling of PET[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7965-7973.
[9] ZHANG S, XU W, DU R, et al. Cosolvent-promoted selective non-aqueous hydrolysis of PET wastes and facile product separation[J]. Green Chemistry, 2022, 24(8): 3284-3292.
[10] JAVED S, FISSE J, VOGT D. Optimization and kinetic evaluation for glycolytic depolymerization of post-consumer PET waste with sodium methoxide[J]. Polymers, 2023, 15(3): 687.
[11] FAN C, ZHANG L, ZHU C, et al. Efficient glycolysis of PET catalyzed by a metal-free phosphazene base: the important role of EG[J].Green Chemistry,2022,24(3):1294-1301.
[12] CASEY É, BREEN R, GÓMEZ J S, et al. Ligand-aided glycolysis of PET using functionalized silica-supported Fe2O3 nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(43): 15544-15555.
[13] AL-SABAGH A M, YEHIA F Z, HARDING D R K, et al. Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis[J]. Green Chemistry, 2016, 18(14): 3997-4003.
[14] ZANGANA K H, FERNANDEZ A, HOLMES J D. Simplified, fast, and efficient microwave assisted chemical recycling of poly (ethylene terephthalate) waste[J]. Materials Today Communications, 2022, 33: 104588.
" |