"[1] CHEN J G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611.
[2] MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205.
[3] LIU M, MAO Q, SHI K, et al. Electroreduction of nitrate to ammonia on palladium-cobalt-oxygen nanowire arrays[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13169-13176.
[4] LIU Y, ZHU X, ZHANG Q, et al. Engineering Mo/Mo2C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry A, 2020, 8(18): 8920-8926.
[5] ZHANG R, ZHANG Y, XIAO B, et al. Phase engineering of high-entropy alloy for enhanced electrocatalytic nitrate reduction to ammonia[J]. Angewandte Chemie (International Ed), 2024, 63(35): e202407589.
[6] QU K, ZHU X, ZHANG Y, et al. Enhancing nitrate reduction to ammonia through crystal phase engineering: unveiling the hydrogen bonding effect in δ-FeOOH electrocatalysis[J]. Small, 2024, 20(31): e2401327.
[7] DANG Y, WU T, TAN H, et al. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution[J]. Energy & Environmental Science, 2021, 14(10): 5433-5443.
[8] WANG P, JIANG K, WANG G, et al. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution[J]. Angewandte Chemie (International Ed), 2016, 55(41): 12859-12863.
[9] 齐庆欢, 师晓含, 张庆, 等. 高导热PVDF/Ag纤维膜的构建及其导热性能[J]. 现代纺织技术, 2024, 32(5): 23-31.
QI Q H, SHI X H, ZHANG Q, et al. Construction and thermal conductivity of PVDF/Ag fiber membranes with high thermal conductivity[J]. Advanced Textile Technology, 2024, 32(5): 23-31.
[10] 方雪松, 熊杰, 宋立新. C@MnO2复合纳米纤维阴极的制备及在Zn2+电池中的应用[J]. 现代纺织技术, 2023, 31(5): 41-48.
FANG X S, XIONG J, SONG L X. Preparation of C@MnO2 composite nanofiber cathode and its application in Zn2+ batteries[J]. Advanced Textile Technology, 2023, 31(5): 41-48.
[11] 韦悦, 王晟, 纪律律. 硒化钌复合碳纳米纤维的制备及其电催化析氢性能[J]. 浙江理工大学学报(自然科学版), 2022, 47(4): 496-502.
WEI Y, WANG S, JI L L. Preparation of ruthenium selenide-composited carbon nanofiber and its electrocatalytic hydrogen evolution performance[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2022, 47(4): 496-502.
[12] YU J, GAO R T, GUO X, et al. Electrochemical nitrate reduction to ammonia on AuCu single-atom alloy aerogels under wide potential window[J]. Angewandte Chemie (International Ed), 2025, 64(4): e202415975.
[13] TIAN Y, HUANG B, SONG Y, et al. Effect of ion-specific water structures at metal surfaces on hydrogen production[J]. Nature Communications, 2024, 15(1): 7834.
[14] LIU H, PARK J, CHEN Y, et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia[J]. ACS Catalysis, 2021, 11(14): 8431-8442.
[15] ZHANG J J, LOU Y Y, WU Z, et al. Spatially separated Cu/Ru on ordered mesoporous carbon for superior ammonia electrosynthesis from nitrate over a wide potential window[J]. Journal of the American Chemical Society, 2024, 146(36): 24966-24977.
[16] WANG S, ZHANG J, GHARBI O, et al. Electrochemical impedance spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 41." |