[1] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]// European Conference on Computer Vision, Cham: Pringer International Pubcishing, 2014:740-755.
|
[2] |
HU X, XU X, XIAO Y, et al. SINet: A scale-insensitive convolutional neural network for fast vehicle detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3):1010-1019.
DOI
URL
|
[3] |
LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017: 1222-1230.
|
[4] |
陈康, 朱威, 任振峰, 等. 基于深度残差网络的布匹疵点检测方法[J]. 小型微型计算机系统, 2020, 41(4):800-806.
|
|
CHEN Kang, ZHU Wei, REN Zhenfeng, et al. Fabric defect detection method based on deep residual network[J]. Journal of Chinese Mini-Micro Computer Systems. 2020, 41(4):800-806.
|
[5] |
孟志青, 邱健数. 基于级联卷积神经网络的复杂花色布匹瑕疵检测算法[J]. 模式识别与人工智能, 2020, 33(12):1135-1144.
|
|
MENG Zhiqing, QIU Jianshu. Defect detection algorithm of complex pattern fabric based on cascaded convolution neural network[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(12):1135-1144.
|
[6] |
CHAWLA N V, BOWYER K W, HALL L O, et al. Synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16:321-357.
DOI
URL
|
[7] |
YANG Y Z, XU Z. Rethinking the value of labels for improving class-imbalanced learning[EB/OL]. 2020: arXiv: 2006.07529[cs.LG]. https://arxiv.org/abs/2006.07529.
|
[8] |
CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 6154-6162.
|
[9] |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: More deformable, better results[C]// Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA. IEEE, 2019: 9300-9308.
|
[10] |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 761-769.
|
[11] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12993-13000.
DOI
URL
|
[12] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
DOI
URL
|
[13] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 770-778.
|
[14] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. IEEE, 2017: 936-944.
|
[15] |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// International Conference on Computer Vision. Venice, Italy. IEEE, 2017: 764-773.
|
[16] |
YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: An advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam The Netherlands. New York, NY, USA: ACM, 2016: 516-520.
|
[17] |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA. IEEE, 2019: 658-666.
|
[18] |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS: Improving object detection with one line of code[C]// International Conference on Computer Vision. Venice, Italy. IEEE, 2017: 5562-5570.
|
[19] |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// 18th International Conference on Pattern Recognition. Hong Kong, China. IEEE, 2006: 850-855.
|
[20] |
安萌, 郑飂默, 王诗宇, 等. 一种改进Faster R-CNN的面料疵点检测方法[J]. 小型微型计算机系统, 2021, 42(5):1029-1033.
|
|
AN Meng, ZHENG Liaomo, WANG Shiyu, et al. A fabric defect detection method based on improved faster R-CNN[J]. Journal of Chinese Computer Systems, 2021, 42(5):1029-1033.
|
[21] |
张泽苗, 霍欢, 赵逢禹. 深层卷积神经网络的目标检测算法综述[J]. 小型微型计算机系统, 2019, 40(9):1825-1831.
|
|
ZHANG Zemiao, HUO Huan, ZHAO Fengyu. Survey of object detection algorithm based on deep convolutional neural networks[J]. Journal of Chinese Computer Systems, 2019, 40(9):1825-1831.
|
[22] |
PADILLA R, PASSOS W L, DIAS T L B, et al. A comparative analysis of object detection metrics with a companion open-source toolkit[J]. Electronics, 2021, 10(3):279.
DOI
URL
|
[23] |
陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4):1201-1227.
|
|
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: asurvey[J]. Journal of Software. 2021, 32(4):1201-1227.
|