现代纺织技术 ›› 2022, Vol. 30 ›› Issue (3): 1-12.DOI: 10.19398/j.att.202106055
• 综合评述 • 下一篇
计瑜1a, 刘元军1a,1b, 赵晓明1a,1b, 侯硕2
收稿日期:
2021-06-20
修回日期:
2021-08-26
出版日期:
2022-05-10
网络出版日期:
2022-05-26
通讯作者:
侯硕,E-mail: hou_shuo@cgnpc.cn
作者简介:
计瑜(1995-),男,安徽芜湖人,硕士研究生,主要从事电磁防护纺织品方面的研究。
基金资助:
JI Yu1a, LIU Yuanjun1a,1b, ZHAO Xiaoming1a,1b, HOU Shuo2
Received:
2021-06-20
Revised:
2021-08-26
Published:
2022-05-10
Online:
2022-05-26
摘要: 电磁波干扰电子电气设备正常运行以及危害人类健康,电磁屏蔽能够有效地对电磁波进行防护。电磁屏蔽织物具有优良的电磁屏蔽性能同时还具有织物特性,是理想的电磁屏蔽材料。首先简述了电磁屏蔽织物的屏蔽机理;其次介绍了电磁屏蔽织物的分类;然后分析了利用金属纤维、导电高聚物、石墨烯、MXene等材料,或运用化学镀法和磁控溅射法制备电磁屏蔽织物的相关进展;最后总结了各类电磁屏蔽织物目前存在的一些问题,并对其发展进行了展望。
中图分类号:
计瑜, 刘元军, 赵晓明, 侯硕. 电磁屏蔽织物的研究现状[J]. 现代纺织技术, 2022, 30(3): 1-12.
JI Yu, LIU Yuanjun, ZHAO Xiaoming, HOU Shuo. Research status of electromagnetic shielding fabrics[J]. Advanced Textile Technology, 2022, 30(3): 1-12.
[1] SONG Q, YE F, YIN X, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017,29(31):1701583. [2] MALGORZATA, MATUSIAK. Important aspects of cotton colour measurement[J]. Fibres & Textiles in Eastern Europe, 2010,18(3):17-23. [3] Li J, Ding Y, Gao Q, et al. Ultrathin and flexible biomass-derived C@CoFe nanocomposite films for efficient electromagnetic interference shielding[J]. Composites Part B: Engineering, 2020,190:107935. [4] CHRIST A, DOUGLAS M, NADAKUDUTI J, et al. Assessing human exposure to electromagnetic fields from wireless power transmission systems[J]. Proceedings of the IEEE, 2013,101(6):1482-1493. [5] 陆颖健,严明,高屹.电磁屏蔽材料的屏蔽机理及现状分析[J].价值工程,2019,38(1):159-162. LU Yingjian,YAN Ming, GAO Yi. Mechanism and development of electromagnetic shielding materials[J].Value Engineering, 2019, 38(1): 159-162. [6] ROH J, CHI Y, KANG T J, et al. Electromagnetic shielding effectiveness of multifunctional metal composite fabrics[J]. Textile Research Journal, 2008,78(9):825-835. [7] 杨召,佐同林.电磁屏蔽织物的研究进展[J].毛纺科技,2016,44(1):14-18. YANG Zhao, ZUO Tonglin. Research situation of electromagnetic shielding fabrics[J]. Wool Textile Journal, 2016, 44(1): 14-18. [8] 周子滢,刘宁娟,贾可,等.电磁屏蔽织物研究进展[J].产业用纺织品,2020,38(10):1-5. ZHOU Ziying, LIU Ningjuan, JIA Ke, et al. Research progress of electromagnetic shielding fabrics[J]. Technical Textiles, 2020, 38(10): 1-5. [9] ZHANG H, XIA Y, GAI J. Ultrathin active layer for transparent electromagnetic shielding window[J]. ACS Omega, 2018,3(3):2765-2772. [10] CHANDRA R J, SHIVAMURTHY B, KULKARNI S D, et al. Hybrid polymer composites for EMI shielding application-a review[J]. Materials Research Express, 2019,6(8):82008. [11] JAGATHEESAN K, RAMASAMY A, DAS A, et al. Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics:A review[J]. Indian Journal of Fibre & Textile Research, 2014,39(9):329-342. [12] 段永洁,谢春萍,王广斌,等.棉/不锈钢纱线针织物的电磁屏蔽性能研究[J].丝绸,2016,53(9):9-14. DUAN Yongjie, XIE Chunping, WANG Guangbin, et al. Study on electromagnetic shielding property of cotton / stainless steel yarn knitted fabrics[J]. Journal of silk, 2016, 53(9): 9-14. [13] 潘振,汪秀琛,苏莹,等.不同电磁屏蔽织物的屏蔽效能对比[J].毛纺科技,2017,45(12):11-15. PAN Zhen, WANG Xiuchen, SU Ying, et al. Property comparison of shielding effectiveness with different electromagnetic shielding fabric[J]. Wool Textile Journal, 2017, 45(12): 11-15. [14] 闫鑫鑫,谢春萍,刘新金,等.不锈钢电磁屏蔽织物的屏蔽效能[J].丝绸,2018,55(10):35-40. YAN Xinxin, XIE Chunping, LIU Xinjin, et al. Shielding effectiveness of stainless steel electromagnetic shielding fabric[J]. Journal of Silk, 2018, 55(10): 35-40. [15] 陈莉,薛洁,刘皓,等.电磁屏蔽织物的研究现状[J].纺织导报,2018(3):68-71. CHEN Li, XUE Jie, LIU Hao,et al. Research status of electromagnetic shielding fabrics[J]. China Textile Leader, 2018(3): 68-71. [16] MEI X, LU L, XIE Y, et al. An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding[J]. Nanoscale, 2019,11(28):13587-13599. [17] 肖红,施楣梧.电磁纺织品研究进展[J].纺织学报,2014,35(1):151-157. XIAO Hong, SHI Meiwu. Research progress on electromagnetic textiles[J]. Journal of Textile Research, 2014, 35(1): 151-157. [18] YANG Y, WANG J, LIU Z, et al. A new study on the influencing factors and mechanism of shielding effectiveness of woven fabrics containing stainless steel fibers[J]. Journal of Industrial Textiles, 2021,50(6):830-846. [19] 程岚,薛雯,张同华.不锈钢纤维/棉复合纱的开发及其性能[J].纺织学报,2014,35(7):36-41. CHENG Lan, XUE Wen, ZHANG Tonghua. Development of stainless steel fiber /cotton compositeyarn and its performances[J]. Journal of Textile Research,2014, 35(7): 36-41. [20] 周灵.羊毛/不锈钢纤维混纺纱及其织物抗电磁辐射性能研究[J].毛纺科技,2016,44(11):18-21. ZHOU Ling. Research on properties of wool/stainless steel blended yarns and antielectromagnetic radiation of fabrics weaved by wool/stainless steel yarns[J]. Wool Textile Journal, 2016,44(11):18-21. [21] SHYR T, SHIE J. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles[J]. Journal of Magnetism and Magnetic Materials, 2012,324(23):4127-4132. [22] PALANISAMY S, TUNAKOVA V, MILITKY J. Fiber-based structures for electromagnetic shielding-comparison of different materials and textile structures[J]. Textile Research Journal, 2018,88(17):1992-2012. [23] 黄华友,吴依琳,倪海燕,等.芳纶/不锈钢纤维混纺机织物电磁屏蔽性能研究[J].化纤与纺织技术,2020,49(1):17-22. HUANG Youhua, WU Yilin, NI Haiyan,et al. Study on electromagnetic shielding properties of aramid/stainless steel fiber blended fabric[J]. Chemical Fiber & Textile Technology, 2020, 49(1): 17-22. [24] RADULESCU I R, MORARI C, SURDU L, et al. Conductive textile structures and their contribution to electromagnetic shielding effectiveness[J]. Industria Textila, 2020,71(5):432-437. [25] 兰建国.银纤维短纤织物的电磁屏蔽效能研究[J].济南纺织服装,2010(4):36-39. LAN Jianguo. Study on electromagnetic shielding efficiency of silver fiber staple fabric[J]. Jinan Man-made Fibre Technology, 2010(4): 36-39. [26] ZKAN Ö I. Investigation of the technical and physical properties of metal composite 1×1 rib knitted fabrics[J]. Industria Textila, 2020,71(1):41-49. [27] PERUMALRAJ R, DASARADAN B S. Electromagnetic shielding effectiveness of doubled copper-cotton yarn woven materials[J]. Fibres & Textiles in Eastern Europe, 2010,18(3):74-80. [28] KIZIL AY A O U G, AKINAY Y. Equivalent analytical model of plain weave composite fabric for electromagnetic shielding applications[J]. Journal of Microwave Power and Electromagnetic Energy, 2020,54(3):245-253. [29] JAGATHEESAN K, DAS A. Development of metallic core-spun yarns and hybrid conductive fabrics for electromagnetic shielding applications[J]. Indian Journal of Fibre & Textile Research, 2020,3(45):346-351. [30] 陈安邦,李婷婷,彭浩凯,等.莱赛尔金属复合织物的制备及其电性质[J].棉纺织技术,2020,48(6):58-62. CHEN Anbang, LI Tingting, PENG Haokai,et al. Preparation and electrical properties oflyocell metal composite fabric[J]. Cotton Textile Technology, 2020, 48(6): 58-62. [31] LIN J, LIN M, LIN T A, et al. A novel processing technique of carbon fiber/copper wire reinforced thermoplastic composites to improve EMI SE performance[J]. Polymer Composites, 2020,41(12):5135-5142. [32] 赵亚茹,肖红,陈剑英.不锈钢短纤维/棉包覆氨纶纱的弹性与电学性能[J].纺织学报,2020,41(3):45-50. ZHAO Yaru, XIAO Hong, CHEN Jianying. Elastic and electrical properties ofstainless steel fiber /cotton blended spandex wrap yarn[J]. Journal of Textile Research, 2020, 41(3): 45-50. [33] 肖红.电磁辐射防护织物及服装的技术特点和标准分析[J].纺织导报,2017(S1):87-93. XIAO Hong. Technical Features of electromagnetic shielding fabric and garmentand related standards[J]. China Textile Leader, 2017(S1): 87-93. [34] DING L, ZHANG M, ZHENG J, et al. Fabrication of ultrafine nickel nanoparticles anchoring carbon fabric composites and their high catalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,562:146-153. [35] 张晓艺,安振涛,闫军,等.电磁屏蔽织物材料研究进展[J].包装工程,2014,35(3):102-106. ZHANG Xiaoyi, AN Zhentao, YAN Jun,et al. Research progress of electromagnetism shielding fabric[J]. Packaging Engineering, 2014, 35(3): 102-106. [36] YU X, SHEN Z. Metal copper films coated on microparticle substrates using an ultrasonic-assisted magnetron sputtering system[J]. Powder Technology, 2008,187(3):239-243. [37] 谭学强,刘建勇,刘佳音,等.磁控溅射镀膜织物的电磁屏蔽性能研究进展[J].针织工业,2018(1):37-42. TAN Xueqiang, LIU Jianyong, LIU Jiayin,et al. Research progress of electromagnetic shielding performance ofmagnetron sputtering coated fabrics[J]. Knitting Industries, 2018(1): 37-42. [38] 张猛,李杨.化学镀镍电磁屏蔽织物的制备工艺研究[J].纺织科技进展,2015(5):40-44. ZHANG Meng, LI Yang. Study on preparation technology of electroless Nickel plating electromagnetic shielding fabric[J].Progress in Textile Science & Technology, 2015(5): 40-44. [39] 靳杜娟,曹蓓,马飞,等.化学镀银织物的制备及性能研究[J].针织工业,2020(10):49-52. JIN Dujuan, CAO Bei, MA Fei,et al.Preparation and properties study of electroless silver plated fabric[J]. Knitting Industries,2020(10): 49-52. [40] 王硕,孙志一.表面镀铜织物制备及红外隐身和电磁屏蔽性能[J].针织工业,2020(5):40-42. WANG Shuo, SUN Zhiyi. Preparation of copper coated fabric and its application about infrared stealth andelectromagnetic shielding[J]. Knitting Industries,2020(5): 40-42. [41] 熊林利,黎学明,王涛,等.尼龙66复合镀电磁屏蔽织物[J].表面技术,2020,49(1):180-186. XIONG Linli, LI Xueming, WANG Tao,et al.Electromagnetic shielding fabric of nylon 66 composite plating[J].Surface Technology, 2020, 49(1): 180 [42] ZHAO H, HOU L, LAN B, et al. Fabrication of conductive soybean protein fiber for electromagnetic interference shielding through electroless copper plating[J]. Journal of Materials Science: Materials in Electronics, 2016,27(12):13300-13308. [43] LIU H, ZHU L, XUE J, et al. A novel two-step method for fabricating silver plating cotton fabrics[J]. Journal of Nanomaterials, 2016,2016:1-11. [44] KIM S M, KIM I Y, KIM H R. Production of electromagnetic shielding fabrics by optimization of electroless silver plating conditions for PET fabrics[J]. The Journal of The Textile Institute, 2017,108(6):1065-1073. [45] 薛洁.化学镀银锦纶织物的电磁屏蔽性能与稳定性研究[D].天津:天津工业大学,2018. XUE Jie.Study on Electromagnetic Shielding Performance and Stability of Electroless Silver Plated Polyamide Fabric[D]. Tianjin: Tiangong University, 2018. [46] LUO J, WANG L, HUANG X, et al. Mechanically durable, highly conductive, and anticorrosive composite fabrics with excellent self-cleaning performance for high-efficiency electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2019,11(11):10883-10894. [47] ALI A, BAHETI V, VIK M, et al. Copper electroless plating of cotton fabrics after surface activation with deposition of silver and copper nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2020,137:109181. [48] 苏毅.电沉积非晶态镍磷合金柔性电磁屏蔽织物的制备及其性能研究[J].山东化工,2019,48(15):55-57. SU Yi.Preparation and characterization of electrodeposition amorphous Ni-P alloysflexible electromagnetic shielding fabrics[J].Shandong Chemical Industry, 2019, 48(15): 55-57. [49] DING X, WANG W, WANG Y, et al. High-performance flexible electromagnetic shielding polyimide fabric prepared by nickel-tungsten-phosphorus electroless plating[J]. Journal of Alloys and Compounds, 2019,777:1265-1273. [50] 周菊先.电磁波屏蔽织物的溅射/化学复合镀膜技术[J].印染,2008,34(5):1-6. ZHOU Juxian. Preparation of electromagnetic shielding textiles by sputtering/chemical coating technology[J].China Dyeing & Finishing, 2008, 34(5): 1-6. [51] ZHANG X, MIAO D, NING X, et al. The stability study of copper sputtered polyester fabrics in synthetic perspiration[J]. Vacuum, 2019,164:205-211. [52] KOPROWSKA J, DOBRUCHOWSKA E, RESZKA K, et al. Morphology and electromagnetic shielding effectiveness of PP nonwovens modified with metallic layers[J]. Fibres & Textiles in Eastern Europe, 2015,23(5):84-91. [53] 盛澄成,徐阳,乔辉,等.ZnO/Cu多层膜的制备及电磁屏蔽性能研究[J].功能材料,2016,47(8):8089-8093. SHENG Chengcheng, XU Yang, QIAO Hui,et al. Preparation of ZnO / Cu multilayer filmsand study on the performance of electromagnetic shielding[J]. Journal of Functional Materials, 2016, 47(8): 8089-8093. [54] LEE S H, LEE Y, JANG M G, et al. Comparative study of EMI shielding effectiveness for carbon fiber pultruded polypropylene/poly(lactic acid)/multiwall CNT composites prepared by injection molding versus screw extrusion[J]. Journal of Applied Polymer Science, 2017,134(34):45222. [55] AL-SALEH M H, SAADEH W H, SUNDARARAJ U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study[J]. Carbon, 2013,60:146-156. [56] 景遐斌,王利祥,王献红,等.导电聚苯胺的合成、结构、性能和应用[J].高分子学报,2005(5):655-663. JING Xiabin, WANG Lixiang, WANG Xianhong, et al. Synthesis, structure, properties and applications of conducting polyaniline[J].Acta Polymerica Sinica, 2005(5): 655-663. [57] WANG Y, WANG W, YU D. Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high microwave absorption performance[J]. Applied Surface Science, 2017,425:518-525. [58] PAN T, ZHANG Y, WANG C, et al. Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability[J]. Composites Science and Technology, 2020,188:107991. [59] 宋天宜,张惠芳,俞菁,等.铜/聚苯胺/涤纶织物的电磁屏蔽性能[J].印染,2017,43(2):16-19. SONG Tianyi, ZHANG Huifang,YU Jing, et al.Electromagnetic shielding property of Cu/PANI/PET fabric[J].China Dyeing & Finishing, 2017, 43(2): 16-19. [60] 俞丹,穆世鹏,王炜.银/聚苯胺/涤纶电磁屏蔽织物的制备[J].印染,2016,42(6):5-10. YU Dan, MU Shipeng, WANG Wei.Preparation of silver/polyaniline/polyester fabric for electromagnetic shielding[J].China Dyeing & Finishing, 2016, 42(6): 5-10 [61] ZHAO H, HOU L, LU Y. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel(LF/PPy/Ni) composites[J]. Materials & Design, 2016,95:97-106. [62] WANG Y, WANG W, DING X, et al. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic[J]. Chemical Engineering Journal, 2020,380:122553. [63] SHAHIDI S, MOAZZENCHI B. Carbon nanotube and its applications in textile industry: A review[J]. Journal of the Textile Institute, 2018,109(12):1653-1666. [64] JOSHI A, DATAR S. Carbon nanostructure composite for electromagnetic interference shielding[J]. Pramana, 2015,84(6):1099-1116. [65] 周子滢,段茹雪,刘宁娟,等.碳纳米管涂层双罗纹织物的电磁屏蔽性能[J].现代纺织技术,2021,29(4):43-50. ZHOU Ziying, DUAN Ruxue, LIU Ningjuan, et al. Electromagnetic shielding performance of double rib fabric coated with carbon nanotube[J]. Advanced Textile Technology, 2021, 29(4): 43-50. [66] LAN C, GUO M, LI C, et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020,12(6):7477-7485. [67] QI Q, WANG Y, DING X, et al. High-electromagnetic-shielding cotton fabric prepared using multiwall carbon nanotubes/nickel-phosphorus electroless plating[J]. Applied Organometallic Chemistry, 2020,34(3):e5434. [68] ZOU L, LAN C, YANG L, et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding[J]. Diamond and Related Materials, 2020,104:107757. [69] CHENG C, GUO R, TAN L, et al. A bio-based multi-functional composite film based on graphene and lotus fiber[J]. Cellulose, 2019,26(3):1811-1823. [70] LI S, LI W, NIE J, et al. Synergistic effect of graphene nanoplate and carbonized loofah fiber on the electromagnetic shielding effectiveness of PEEK-based composites[J]. Carbon, 2019,143:154-161. [71] GHOSH S, GANGULY S, DAS P, et al. Fabrication of reduced graphene oxide/silver nanoparticles decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application[J]. Fibers and Polymers, 2019,20(6):1161-1171. [72] WANG Y, WANG W, XU R, et al. Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding[J]. Chemical Engineering Journal, 2019,360:817-828. [73] GUPTA S, CHANG C, Anbalagan A K, et al. Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption[J]. Composites Science and Technology, 2020,188:107994. [74] ZHAI J, CUI C, REN E, et al. Facile synthesis of nickel/reduced graphene oxide-coated glass fabric for highly efficient electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2020,31(11):8910-8922. [75] ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020,12(4):4895-4905. [76] CHEN H, WEN Y, QI Y, et al. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength[J]. Advanced Functional Materials, 2020,30(5):1906996. [77] MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017,29(4):1632-1640. [78] LI R, ZHANG L, SHI L, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS nano, 2017,11(4):3752-3759. [79] ZHA X, ZHOU J, ZHOU Y, et al. Promising electron mobility and high thermal conductivity in Sc2CT2(T= F, OH) MXenes[J]. Nanoscale, 2016,8(11):6110-6117. [80] LIU X, JIN X, LI L, et al. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance[J]. Journal of Materials Chemistry A, 2020,8(25):12526-12537. [81] GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019,26(4):2833-2847. [82] HAN M, YIN X, WU H, et al. Ti3C2MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces, 2016,8(32):21011-21019. [83] WANG Q, ZHANG H, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019,29(7):1806819. [84] JIA L, ZHANG G, XU L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding[J]. ACS applied materials & interfaces, 2019,11(1):1680-1688. [85] JIA L, XU L, REN F, et al. Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding[J]. Carbon, 2019,144:101-108. [86] LIU L, CHEN W, ZHANG H, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019,29(44):1905197. [87] GHOSH S, GANGULY S, REMANAN S, et al. Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding[J]. Composites Science and Technology, 2019,181:107682. [88] GHOSH S, NITIN B, REMANAN S, et al. A multifunctional smart textile derived from merino wool/nylon polymer nanocomposites as next generation microwave absorber and soft touch sensor[J]. ACS Applied Materials & Interfaces, 2020,12(15):17988-18001. |
[1] | 祝毕志, 林红, 陈宇岳, 张德锁. 基于氧化石墨烯/纳米银的导电水凝胶制备及其性能[J]. 现代纺织技术, 2022, 30(5): 97-103. |
[2] | 王卫, 林思伶, 李龙, 马珮珮, 董子靖, 吴磊. 导电涤棉纱的制备及其织物电加热性能[J]. 现代纺织技术, 2022, 30(4): 24-31. |
[3] | 赵为陶, 姚雪烽, 严艺, 张德锁, 林红, 陈宇岳. rGO/AgNPs/改性PVA柔性应变传感薄膜的制备及其性能[J]. 现代纺织技术, 2022, 30(4): 80-88. |
[4] | 贾子奇, 王琛, 赵甜甜, 刘扬. 氮掺杂氧化石墨烯-TiO2/ PAN复合纳米纤维膜的制备及其光催化性能[J]. 现代纺织技术, 2022, 30(3): 97-107. |
[5] | 王小华, 汪春波, 王炳奎, 冯卫芳. 氧化石墨烯改性聚酯纺丝加工技术探究[J]. 现代纺织技术, 2022, 30(3): 60-64. |
[6] | 陈嘉炜, 张宏伟, 高晓平. 氧化石墨烯改性碳玻混杂纤维增强复合材料的压缩性能[J]. 现代纺织技术, 2022, 30(2): 75-84. |
[7] | 严小飞, 方杰, 朱晨凯, 李家炜, 祝成炎, 戚栋明. 二维材料MXene(Ti3C2Tx)的制备、性能及其在纺织领域中的应用[J]. 现代纺织技术, 2022, 30(2): 1-8. |
[8] | 刘扬, 王琛, 冯伟忠, 贾子奇. PVA/SiO2/GO复合夹层结构纳滤膜的制备及其性能[J]. 现代纺织技术, 2022, 30(1): 78-89. |
[9] | 王欢欢,陈玺,武晨光,赵晓明. 三维石墨烯多孔复合材料的吸波性能及研究进展[J]. 现代纺织技术, 2021, 0(5): 13-25. |
[10] | 程飞阳,祝国成. 石墨烯改性纺织品研究进展[J]. 现代纺织技术, 2021, 0(4): 107-114. |
[11] | 吴跃亚,蒲新明,郑兵,张顺花. 微量氧化石墨烯改性聚酯的制备及性能研究[J]. 现代纺织技术, 2021, 0(4): 96-101. |
[12] | 赵子健,张兆发,张迁迁,肖天骏,谢昊天,姜舒宁,闫亚东,张德锁. 柔性石墨烯/聚苯胺复合纤维的制备及电化学性能[J]. 现代纺织技术, 2021, 0(1): 89-96. |
[13] | 王翊,刘元军,赵晓明. 碳系电磁屏蔽材料的研究进展[J]. 现代纺织技术, 2021, 0(1): 1-11. |
[14] | 汪秀琛,李亚云,段佳佳,刘哲,周忠. 宽频范围同类型双层电磁屏蔽织物的屏蔽效能变化规律[J]. 现代纺织技术, 2020, 0(3): 21-26. |
[15] | 吕艳如,苗大刚,周蓉. 不同处理方式对SMS医用防护非织造布的抗静电性与拒水性能的影响[J]. 现代纺织技术, 2019, 0(05): 80-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||