Advanced Textile Technology ›› 2025, Vol. 33 ›› Issue (05): 10-21.DOI: 10.12477/xdfzjs.20250502
Previous Articles Next Articles
Online:
2025-05-10
Published:
2025-05-20
CLC Number:
YAO Yi, JIN Zimin, MENG Ranju, GAO Huiying. Research progress of polyurethane materials in the field of new intelligent textile and clothing[J]. Advanced Textile Technology, 2025, 33(05): 10-21.
姚怡, 金子敏, 蒙冉菊, 高慧英. 聚氨酯材料在新型智能纺织服装领域的研究进展[J]. 现代纺织技术, 2025, 33(05): 10-21.
[1] 陈海通, 王进美, 王丞, 等. 纤维材料在智能纺织品的研究与应用[J]. 合成纤维, 2024, 53(4): 24-30. CHEN Haitong, WANG Jinmei, WANG Cheng, et al. Research and application of fiber materials in smart textiles[J]. Synthetic Fiber in China, 2024, 53(4): 24-30. [2] 张蕊,郑莹莹,董正梅,等.仿生设计在智能纺织品中的应用与研究进展[J].现代纺织技术,2023,31(6):226-240. ZHANG Rui, ZHENG Yingying, DONG Zhengmei, et al. Application and research progress of bionic design in smart textiles[J]. Advanced Textile Technology, 2023, 31(6): 226-240. [3] LI Q, XUE Z, WU Y, et al. The status quo and prospect of sustainable development of smart clothing[J]. Sustainability, 2022, 14(2): 990. [4] DE OLIVEIRA C R S, DA SILVA A H Jr, IMMICH A P S, et al. Use of advanced materials in smart textile manufacturing[J]. Materials Letters, 2022, 316: 132047. [5] 郭书君, 尹昌平, 赵秀辉, 等. 聚氨酯弹性体分子结构对阻尼及力学性能的影响[J]. 材料工程, 2023, 51(9): 192-199. GUO Shujun, YIN Changping, ZHAO Xiuhui, et al. Effect of molecular structure of polyurethane elastomer on damping and mechanical properties[J]. Journal of Materials Engineering, 2023, 51(9): 192-199. [6]FERNÁNDEZ C E, BERMÚDEZ M, VERSTEEGEN R M, et al. An overview on 12-polyurethane: synthesis, structure and crystallization[J]. European Polymer Journal, 2010, 46(11): 2089-2098. [7]田千俊,王淋,黄志超,等.R值对含二硒键聚氨酯自修复性能的影响[J].现代纺织技术,2023,31(5):106-116. TIAN Qianjun, WANG Lin, HUANG Zhichao, et al. Effect of the R value on the self-healing property of polyurethane containing diselenide bonds[J]. Advanced Textile Technology, 2023, 31(5): 106-116. [8]GHONIA J R, SAVANI N G, PRAJAPATI V, et al. A review on polyurethane based multifunctional materials synthesis for advancement in textile coating applications[J]. Journal of Polymer Research, 2024, 31(3): 95. [9]WEI H, WANG X, LIU W, et al. Investigating the structure and properties of polyurethane hydrogels with varying soft and hard segments[J]. Journal of Polymer Science, 2024, 62(17): 3979-3991. [10]张娟, 赵耀明, 郭熙桃. 聚氨酯弹性纤维纺丝及改性技术进展[J]. 化纤与纺织技术, 2008, 37(1): 31-35. ZHANG Juan, ZHAO Yaoming, GUO Xitao. The development of technique for spinning and modification of polyurethane elastic fiber[J]. Chemical Fiber & Textile Technology, 2008, 37(1): 31-35. [11]于国玲, 符英, 赵万赛, 等. 国内聚氨酯涂料的研究进展[J]. 弹性体, 2022, 32(5): 98-102. YU Guoling, FU Ying, ZHAO Wansai, et al. Research progress of polyurethane coatings in China[J]. China Elastomerics, 2022, 32(5): 98-102. [12] 郝习波, 赵彩莉, 刘国亮. 形状记忆聚氨酯在纺织服饰领域应用的研究进展[J]. 毛纺科技, 2023, 51(11): 113-118. HAO Xibo, ZHAO Caili, LIU Guoliang. Applications of shape memory polyurethane in the field of textiles and apparel[J]. Wool Textile Journal, 2023, 51(11): 113-118. [13] WANG R, XU W, SHEN W, et al. A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring[J]. Inorganic Chemistry Frontiers, 2019, 6(11): 3119-3124. [14] 莫涯, 岳萌, 吴万超, 等. 聚氨酯导电复合材料研究进展[J]. 现代化工, 2024, 44(1): 39-43. MO Ya, YUE Meng, WU Wanchao, et al. Research progress of polyurethane conductive composites[J]. Modern Chemical Industry, 2024, 44(1): 39-43. [15] SIKDAR P, DIP T M, DHAR A K, et al. Polyurethane (PU) based multifunctional materials: emerging paradigm for functional textiles, smart, and biomedical applications[J]. Journal of Applied Polymer Science, 2022, 139(38): e52832. [16] 曾登, 孙振波, 闫子涵. 水性聚氨酯的改性及其在纺织领域的应用[J]. 纺织报告, 2023, 42(12): 1-4. ZENG Deng, SUN Zhenbo, YAN Zihan. Modification of waterborne polyurethane and its application in the textile field[J]. Jiangsu Textile, 2023, 42(12): 1-4. [17] SUN Y, TIAN X, CHEN Z, et al. Multifunctional fabric leveraging coating of bio-based waterborne polyurethane[J]. Fibers and Polymers, 2024, 25(5): 1751-1764. [18] LIANG Z, LI J, CHEN K, et al. Multiple relaxation mechanism-based thermo-mechanical constitutive model describing cyclic shape memory effect of shape memory polyurethane[J]. Acta Mechanica Sinica, 2024, 40(1): 423347. [19] 孙焕惟, 张恒, 李霞, 等. 形状记忆聚氨酯及其非织造材料成型方法研究进展[J]. 材料导报, 2021, 35(23): 23212-23218. SUN Huanwei, ZHANG Heng, LI Xia, et al. A review on the shape memory polyurethane and its nonwoven progress[J]. Materials Reports, 2021, 35(23): 23212-23218. [20]JI F L, ZHU Y, HU J L, et al. Smart polymer fibers with shape memory effect[J]. Smart Material Structures, 2006, 15(6): 1547-1554. [21] MENG Q, HU J, ZHU Y, et al. Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods[J]. Smart Materials and Structures, 2007, 16(4): 1192-1197. [22] SHI Y, CHEN H, GUAN X. High shape memory properties and high strength of shape memory polyurethane nanofiber-based yarn and coil[J]. Polymer Testing, 2021, 101: 107277. [23] PENG Y, CUI Y. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742. [24] KORKMAZ MEMIŞ N, KAPLAN S. Production of thermal and water responsive shape memory polyurethane nanocomposite filaments with cellulose nanowhisker incorporation[J]. Cellulose, 2021, 28(11): 7075-7096. [25] ZHENG Y, ZENG B, YANG L, et al. Fabrication of thermoplastic polyurethane/polycaprolactone multilayered composites with confined distribution of MWCNTs for achieving tunable thermo- and electro-responsive shape-memory performances[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2977-2987. [26] YANG L, TONG R, WANG Z, et al. Polydopamine particle-filled shape-memory polyurethane composites with fast near-infrared light responsibility[J]. Chemphyschem, 2018, 19(16): 2052-2057. [27] YAKACKI C M, SATARKAR N S, GALL K, et al. Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation[J]. Journal of Applied Polymer Science, 2009, 112(5): 3166-3176. [28] FAN W, ZHANG Y, LI W, et al. Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating[J]. Chemical Engineering Journal, 2019, 368: 1033-1044. [29] ZHANG L, HUANG Y, DONG H, et al. Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor[J]. Composites Part B: Engineering, 2021, 223: 109149. [30] 贺军, 郭书文, 李琳, 等. 面向智能可穿戴纺织品的聚合物基柔性传感器的研究进展[J].棉纺织技术, 2024, 6(5): 1-9. HE Jun, GUO Shuwen, LI Lin, et al. Advance in polymer-based flexible sensors for smart wearable textiles[J]. Cotton Textile Technology, 2024, 6(5): 1-9. [31] ZHAO Y, YOU S, FANG J, et al. Wearable skin-like polyurethane devices with variable optical functions[J]. Chemical Engineering Journal, 2024, 491: 152126. [32] 周丹砚, 黄汉雄. 基于导电涂层微结构TPU柔性传感器的制备和性能[J]. 中国塑料, 2022, 36(11): 1-6. ZHOU Danyan, HUANG Hanxiong. Preparation and performance of flexible sensors based on microstructured thermoplastic polyurethane with conductive coatings[J]. China Plastics, 2022, 36(11): 1-6. [33] HE X, SHI J, HAO Y, et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing[J]. Carbon Energy, 2022, 4(4): 621-632. [34] PROBST H, KATZER K, NOCKE A, et al. Melt spinning of highly stretchable, electrically conductive filament yarns[J]. Polymers, 2021, 13(4): 590. [35] ZHOU J, ZHAO S, TANG L, et al. Programmable and weldable superelastic EGaIn/TPU composite fiber by wet spinning for flexible electronics[J]. ACS Applied Materials & Interfaces, 2023, 49:15. [36] LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021, 84: 105954. [37] 孙静怡, 黄锋林, 薛丽媛, 等. 软硬链段添加碳纳米管/炭黑对聚氨酯纳米纤维性能的影响[J]. 精细化工, 2020, 37(6):1184-1192. SUN Jingyi, HUANG Fenglin, XUE Liyuan, et al. Effect of carbon nanotubes/carbon black dispersed in soft and hard chain segment of polyurethane on the properties of polyurethane nanofibers[J]. Fine Chemicals, 2020, 37(6): 1184-1192. [38] NAJAFI TIREH SHABANKAREH A, SAMADI PAKCHIN P, HASANY M, et al. Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxide nanocomposite scaffolds[J]. Materials Chemistry and Physics, 2023, 305: 127961. [39] 陈中华, 曾明, 李亮, 等. 导电聚合物/聚氨酯复合材料的研究进展[J]. 现代化工, 2020, 40(5): 73-76. CHEN Zhonghua, ZENG Ming, LI Liang, et al. Research progress on conductive polymers/polyurethane composites[J]. Modern Chemical Industry, 2020, 40(5): 73-76. [40] XUE B, ZHANG F, ZHENG J, et al. Flexible piezoelectric device directly assembled through the continuous electrospinning method[J]. Smart Materials and Structures, 2021, 30(4): 045006. [41] HOSSEINI RAVANDI S A, SADRJAHANI M, VALIPOURI A, et al. Recently developed electrospinning methods: a review[J]. Textile Research Journal, 2022, 92(23/24): 5130-5145. [42] HOU X, ZHOU Y, LIU Y, et al. Coaxial electrospun flexible PANI// PU fibers as highly sensitive pH wearable sensor[J]. Journal of Materials Science, 2020, 55(33): 16033-16047. [43] 汪文龙, 王江楠, 赵昕. 碳纳米管/聚氨酯复合薄膜的制备及其拉伸传感性能[J]. 东华大学学报(自然科学版), 2021, 47(2): 12-18. WANG Wenlong, WANG Jiangnan, ZHAO Xin. Preparation and stretchable sensing properties of carbon nanotubes/polyurethane films[J]. Journal of Donghua University (Natural Science), 2021, 47(2): 12-18. [44] YANG Z, ZHAI Z, SONG Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics[J]. Advanced Materials, 2020, 32(10): 1907495. [45] XU D, OUYANG Z, DONG Y, et al. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management[J]. Advanced Fiber Materials, 2023, 5(1): 282-295. [46] HU J, MENG H, LI G, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures, 2012, 21(5): 053001. [47] 涂林, 鲍利红, 修兴洪, 等. 光热转换聚氨酯基储能调温纤维的制备及性能[J]. 北京服装学院学报(自然科学版), 2021, 41(4): 71-78. TU Lin, BAO Lihong, XIU Xinghong, et al. Preparation and properties of photothermal conversion fiber for energy storage and temperature regulation[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2021, 41(4): 71-78. [48]CUI Z, YUE X, WANG Y, et al. A light-responsive poly(urethane-urea) actuator with room temperature self-healing performance[J]. Chemical Engineering Journal, 2024, 479: 147538. [49]LI G, PAN Z, JIA Z, et al. An effective approach for fabricating high-strength polyurethane hydrogels with reversible photochromic performance as a photoswitch[J]. New Journal of Chemistry, 2021, 45(14): 6386-6396. [50] CHUNG M, SKINNER W H, ROBERT C, et al. Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51504-51518. [51] HA J H, JEONG Y, AHN J, et al. A wearable colorimetric sweat pH sensor-based smart textile for health state diagnosis[J]. Materials Horizons, 2023, 10(10): 4163-4171. [52] XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884. [53] 朱俊荣,王潮霞.基于电纺NiI2/TPU纳米纤维膜的湿敏变色传感器的制备及性能[J]. 精细化工, 2021, 38(12): 2471-2477. ZHU Junrong, WANG Chaoxia. Preparation and properties of colorimetric humidity sensor based on electrospun Nil2/TPU nanofibrous membrane[J]. Fine Chemicals, 2021, 38(12): 2471-2477. [54] DING S, JIN X, WANG B, et al. Integrating Ti3C2Tx MXene nanosheets with thermoplastic polyurethane nanofibers as wearable humidity sensors for noninvasive sleep monitoring and noncontact sensing[J]. ACS Applied Nano Materials, 2023, 6(13): 11810-11821. [55] ZHANG J, ZHANG Y, WU S, et al. Weavable coaxial phase change fibers concentrating thermal energy storage, photothermal conversion and thermochromic responsiveness toward smart thermoregulatory textiles[J]. Chemical Engineering Journal, 2024, 483: 149281. [56] LEI Y, JIANG B, LIU H, et al. Mechanically robust superhydrophobic polyurethane coating for anti-icing application[J]. Progress in Organic Coatings, 2023, 183: 107795. [57] 仇慧丽, 杨群, 崔进, 等. 防水透湿膜在纺织上的应用及研究进展[J]. 现代纺织技术, 2023, 31(2): 244-255. QIU Huili, YANG Qun, CUI Jin, et al. Research progress and application of waterproof and moisture permeable membranes on textiles[J]. Advanced Textile Technology, 2023, 31(2): 244-255. [58]KUNDU C K, LI Z, SONG L, et al. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications[J]. European Polymer Journal, 2020, 137: 109911. [59] ÖZER M S, WESEMANN M J, GAAN S. Flame retardant back-coated PET fabric with DOPO-based environmentally friendly formulations[J]. Progress in Organic Coatings, 2023, 175: 107363. [60] CHENG X W, LIU Y W, JIN J H, et al. Metallic phytates modified polyurethane coating for constructing long-lasting flame-retardant outdoor polyester fabric[J]. Progress in Organic Coatings, 2024, 188: 108205. [61] LIU Y W, HU B Q, GUAN J P, et al. Biomass phytate salt-based flame-retardant polyurethane coating for outdoor polyester fabric: a long-lasting solution[J]. Polymer Testing, 2024, 135: 108467. [62] ZHOU J, DONG F, LIU C, et al. P, N, Si synergistic flame-retarding water polyurethane coating with superior flame retardancy and hydrophobicity[J]. Journal of Polymer Research, 2023, 30(7): 260. [63] DING Z, LI J, XIN W, et al. Low gloss waterborne polyurethane coatings with anti-dripping and flame retardancy via montmorillonite nanosheets[J]. Progress in Organic Coatings, 2019, 136: 105273. [64] ZHANG D, WILLIAMS B L, LIU J, et al. An environmentally-friendly sandwich-like structured nanocoating system for wash durable, flame retardant, and hydrophobic cotton fabrics[J]. Cellulose, 2021, 28(16): 10277-10289. [65] ZHOU J, LIU C, LU K, et al. Biomass-functionalized graphene oxide toward waterborne polyurethane composite with enhanced flame retardancy and hydrophobicity[J]. Journal of Polymer Science, 2023, 61(22): 2909-2921. [66] 张薄, 刘萍, 黄桌然, 等. 水性阻燃剂的涂覆量对织物阻燃性能的影响[J]. 产业用纺织品, 2022, 40(9): 22-28. ZHANG Bo, LIU Ping, HUANG Zhuoran, et al. Effect of amount of water-borne flame retardant on flame-retardant properties of fabrics[J]. Technical Textiles, 2022, 40(9): 22-28. [67] CHENG S, HAO W, WANG Y, et al. Commercial Janus fabrics as reusable facemask materials: A balance of water repellency, filtration efficiency, breathability, and reusability[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32579-32589. [68] HAN Y, JIANG Y, TAN P, et al. Waterborne fluorinated polyurethane containing guanidine for antibacterial and anti-inorganic fouling coatings with improved mechanical properties[J]. Progress in Organic Coatings, 2022, 173: 107219. [69] CHENG L, REN S, LU X. Application of eco-friendly waterborne polyurethane composite coating incorporated with nano cellulose crystalline and silver nano particles on wood antibacterial board[J]. Polymers, 2020, 12(2): 407. [70] ZHAO J, MILLIANS W, TANG S, et al. Self-stratified antimicrobial acrylic coatings via one-step UV curing[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18467-18472. [71] DU S, WANG Y, ZHANG C, et al. Self-antibacterial UV-curable waterborne polyurethane with pendant amine and modified by guanidinoacetic acid[J]. Journal of Materials Science, 2018, 53(1): 215-229. [72] HUANG Z, NAZIFI S, CHENG K, et al. Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings[J]. Chemical Engineering Journal, 2021, 422: 130085. [73] 韩梦瑶, 任松, 葛灿, 等. 用于个人热管理的被动调温服装材料研究进展[J]. 现代纺织技术, 2023, 31(1): 92-103. HAN Mengyao, REN Song, GE Can, et al. Research progress of passive temperature-regulated clothing materials for personal thermal management[J]. Advanced Textile Technology, 2023, 31(1): 92-103. [74] FAN W, LI H, WANG Z, et al. Modified hollow glass microsphere in situ reinforced polyurethane/polydimethylsiloxane composite coating with self-cleaning and durable passive radiative cooling behaviors[J]. Progress in Organic Coatings, 2024, 191: 108456. [75] SONG Y, ZHAN Y, LI Y, et al. Scalable fabrication of super-elastic TPU membrane with hierarchical pores for subambient daytime radiative cooling[J]. Solar Energy, 2023, 256: 151-157. [76] SHAN X, LIU L, WU Y, et al. Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative cooling[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(20): e2201190. [77] 杨献金,张子明,李勇.水性聚氨酯在合成革干法涂层中的应用研究[J].皮革科学与工程,2023,33(2):55-61. YANG Xianjin, ZHANG Ziming, LI Yong. Study on application of waterborne polyurethane in the dry coating of synthetic leather[J]. Leather Science and Engineering, 2023, 33(2): 55-61. [78] 李琛, 王冬, 仲鸿天, 等. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(3): 129-136. LI Chen, WANG Dong, ZHONG Hongtian, et al. Synthesis and application of microfiber leather impregnated with waterborne polyurethane[J]. Journal of Textile Research, 2024, 45(3): 129-136. [79] FAN Z, ZHAO C, WU J, et al. Intelligent safeguarding Leather with excellent energy absorption via the toughness-flexibility coupling designation[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107078. [80] LI J, CUI M, WEN J, et al. Leather-like hierarchical porous composites with outstanding electromagnetic interference shielding effectiveness and durability[J]. Composites Part B: Engineering, 2021, 225: 109272. |
[1] | WEN Hongquana, b, LIU Qia, CAO Qunxiang, LUO Jiea, b, , CHEN Lijie. Preparation and properties of solution blow spinning PVA fibers [J]. Advanced Textile Technology, 2025, 33(06): 1-8. |
[2] | WANG Suli, ZHAO Lianying, MA Leilei, DONG Fuxing, GU Xuefeng. Prediction of color mixing in recycled colored fibers [J]. Advanced Textile Technology, 2025, 33(06): 42-50. |
[3] | LÜ Yanyan, XUE Wenliang, WEI Mengyuan, MA Yanxue. Analysis of textile quality inspection data based on T-Apriori algorithm [J]. Advanced Textile Technology, 2025, 33(06): 82-90. |
[4] | GAO Fulei, LIU Tao, HU Die, DING Xinbo. Preparation and in vitro biological properties of thermoplastic polyurethane-borosilicate bioglass composite fiber membranes [J]. Advanced Textile Technology, 2025, 33(06): 100-109. |
[5] | HOU Jinli, ZHENG Junjie, WANG Chenxiao, Xiong Fan, YANG Chaoran, LI Yunfei, FAN Mengzhao. Research progress on fabric-based wearable ECG electrodes [J]. Advanced Textile Technology, 2025, 33(04): 92-104. |
[6] | YANG Dan, LIU Shengdong, CHANG Hao, YAO Gaozheng, ZHANG Weitian. Progress in application of intelligent shear stiffening gel composites [J]. Advanced Textile Technology, 2025, 33(03): 16-26. |
[7] | WANG Yang, HU Kaining, ZHANG Changhuan. Deformation properties of wearable woven fabrics based on nickel-titanium alloy wires [J]. Advanced Textile Technology, 2025, 33(03): 118-125. |
[8] | ZHU Fanqiang, SHEN Wei, YANG Xiaobing, YAO Jiangweia, ZHAO Defanga, ZHANG Wanhu, ZOU Zhuanyong. Research progress of spreading technology for large tow carbon fibers [J]. Advanced Textile Technology, 2025, 33(02): 1-9. |
[9] | ZHANG Gongyu, SUN Kai, LIU Yuanjun, XIA Lei, ZHUANG Xupin. Preparation and photothermal conversion properties of MoS2/AgNPs@ANFs composite aerogels [J]. Advanced Textile Technology, 2025, 33(02): 33-41. |
[10] | CHEN Mingliang, , ZHANG Junhui, QIAN Yuhan, LIU Yuxi, LIU Junze, . Exploring intelligent spinning applications from the perspective of digital twins [J]. Advanced Textile Technology, 2025, 33(02): 90-99. |
[11] | ZHAO Longfei, LI Hui, ZHANG Yang, JIA Zhengqing, XUE Yuan. A single-spindle monitoring system and its application for intelligent spinning construction [J]. Advanced Textile Technology, 2025, 33(02): 100-106. |
[12] | HE Hao, ZHANG Yingliang, LIU Chenjun, YIN Yaran, CHEN Kang, ZHANG Xianming, . Creep response mechanism of nylon 6 industrial fibers under different loads [J]. Advanced Textile Technology, 2025, 33(01): 1-9. |
[13] | ZHENG Mengyu , ZHANG Jinzhen, DING Yuanyuan, LEI Bin, ZHU Chengyan , ZHANG Hongxia . Antimicrobial and far-infrared properties of interwoven silk/soybean protein fiber fabrics [J]. Advanced Textile Technology, 2025, 33(01): 36-43. |
[14] | LIU Shukun, WANG Hang, TIAN Mingwei. Research progress on alternating current electroluminescent fibers and their intelligent interactive applications [J]. Advanced Textile Technology, 2025, 33(01): 84-92. |
[15] | CHEN Xue, YU Lijing, ZHANG Zhaohua. Review of personal cold and heat regulating clothing [J]. Advanced Textile Technology, 2024, 32(9): 28-37. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||