[1] SERVICE R F. Desalination freshens up[J]. Science, 2006, 313(5790): 1088-1090. [2] EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerging Contaminants, 2017, 3(1): 1-16. [3] ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. [4] 唐朝春,黄从新.共价有机框架材料吸附去除重金属离子研究进展[J].水处理技术,2022,48(3):1-6,12. TANG Chaochun, HUANG Congxin. Progress in adsorption and removal of heavy metal ions by covalent organic framework materials[J]. Technology of Water Treatment, 2022, 48(3): 1-6,12. [5] DING J, TANG Y, ZHENG S, et al. The synthesis of MOF derived carbon and its application in water treatment[J]. Nano Research, 2022, 15(8): 6793-6818. [6] YAO Y, WANG C, NA J, et al. Macroscopic MOF architectures: Effective strategies for practical application in water treatment[J]. Small, 2022, 18(8): 2104387. [7] 附青山,张磊,张伟,等.金属-有机框架材料对废水中污染物的吸附研究进展[J].材料导报,2021,35(11):11100-11110. FU Qingshan, ZHANG Lei, ZHANG Wei, et al. Research progress in metal-organic frame materials for adsorptive removal of contamination in wastewater[J]. Materials Reports, 2021, 35(11): 11100-11110. [8] COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. [9] ZHU D, ZHU Y, YAN Q, et al. Pure crystalline covalent organic framework aerogels[J]. Chemistry of Materials, 2021, 33(11): 4216-4224. [10] MARTÍN-ILLÁN J Á, RODRÍGUEZ-SAN-MIGUEL D, CASTILLO O, et al. Macroscopic ultralight aerogel monoliths of imine-based covalent organic frameworks[J]. Angewandte Chemie International Edition, 2021, 60(25): 13969-13977. [11] FENG C, OU K, ZHANG Z, et al. Dual-layered covalent organic framework/Mxene membranes with short paths for fast water treatment[J]. Journal of Membrane Science, 2022, 658: 120761. [12] SAPUTRA E, PRAWIRANEGARA B A, SUGESTI H, et al. Covalent triazine framework: Water treatment application[J]. Journal of Water Process Engineering, 2022, 48: 102874. [13] LOHSE M S, BEIN T. Covalent organic frameworks: Structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553. [14] DIERCKS C S, YAGHI O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. [15] 张关印,关清卿,庙荣荣,等.共价有机骨架材料的合成及应用[J].材料导报,2021,35(13):13215-13226. ZHANG Guanyin, GUAN Qingqing, MIAO Rongrong, et al. Synthesis and application of covalent organic frameworks[J]. Materials Reports, 2021, 35(13): 13215-13226. [16] URIBE-ROMO F J, HUNT J R, FURUKAWA H, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571. [17] KUHN P, ANTONIETTI M, THOMAS A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie, 2008, 47(18): 3450-3453. [18] ZHANG Y, HUANG Z, RUAN B, et al. Design and synthesis of polyimide covalent organic frameworks[J]. Macromolecular Rapid Communications, 2020, 41(22): e2000402. [19] URIBE-ROMO F J, DOONAN C J, FURUKAWA H, et al. Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30): 11478-11481. [20] KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. [21] DING X, GUO J, FENG X, et al. Synthesis of metallop-hthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity[J]. Angewandte Chemie, 2011, 50(6): 1289-1293. [22] 王立明,张凤涛,曲浩文,等.卟啉基共价有机框架材料的合成及降解应用[J].山东化工,2021,50(22):7-8,11. WANG Liming, ZHANG Fengtao, QU Haowen, et al. Synthesis and degradation application of porphyrin based covalent organic frameworks[J]. Shandong Chemical Industry, 2021, 50(22): 7-8,11. [23] 钱成.二维异孔共价有机框架构筑新策略的研究[D].长沙:湖南大学,2018:44-49. QIAN Cheng. Study on Novel Strategies for Constructing 2D Heteropore Covalent Organic Frameworks[D]. Changsha: Hunan University, 2018: 44-49. [24] FENG X, DING X S, JIANG D L. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, 41(18): 6010-6022. [25] JACKSON K T, REICH T E, EL-KADERI H M. Targeted synthesis of a porous borazine-linked covalent organic framework[J]. Chemical Communications, 2012, 48(70): 8823-8825. [26] WAN S, GUO J, KIM J, et al. A belt-shaped, blue luminescent, and semiconducting covalent organic framework[J]. Angewandte Chemie, 2008, 47(46): 8826-8830. [27] CÔTÉ A P, EL-KADERI H M, FURUKAWA H, et al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. Journal of the American Chemical Society, 2007, 129(43): 12914-12915. [28] FANG Q R, ZHUANG Z B, GU S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5: 4503. [29] DING X S, FENG X, SAEKI A, et al. Conducting metallophthalocyanine 2d covalent organic frameworks: The role of central metals in controlling π-electronic functions[J]. Chemical Communications, 2012, 48(71): 8952-8954. [30] FENG X, LIU L L, HONSHO Y, et al. High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction[J]. Angewandte Chemie, 2012, 51(11): 2618-2622. [31] FENG X, DING X S, CHEN L, et al. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity[J]. Scientific Reports, 2016, 6: 32944. [32] JIN S, SAKURAI T, KOWALCZYK T, et al. Two-dimensional tetrathiafulvalene covalent organic frame-works: Towards latticed conductive organic salts[J]. Chemistry, 2014, 20(45): 14608-14613. [33] DALAPATI S, ADDICOAT M, JIN S B, et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies[J]. Nature Communications, 2015, 6: 7786. [34] ALAHAKOON S B, THOMPSON C M, NGUYEN A X, et al. An azine-linked hexaphenylbenzene based covalent organic framework[J]. Chemical Communi-cations, 2016, 52(13): 2843-2845. [35] HUANG N, WANG P, JIANG D. Covalent organic frameworks: A materials platform for structural and functional designs[J]. Nature Reviews Materials, 2016, 1: 16068. [36] 张成格,匡禹霏,仲丛瑞,等.共价有机骨架材料吸附性能研究进展[J].化工新型材料,2021,49(S1):73-77,87. ZHANG Chengge, KUANG Yufei, ZHONG Congrui, et al. Research progress on adsorption property of covalent organic framework[J].New Chemical Materials, 2021, 49(S1): 73-77,87. [37] EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3d covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. [38] FANG Q R, WANG J H, GU S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. Journal of the American Chemical Society, 2015, 137(26): 8352-8355. [39] FANG Q R, GU S, ZHENG J, et al. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angewandte Chemie, 2014, 53(11): 2878-2882. [40] 王珊,冯霄,王博.共价有机框架材料的设计与制备[J].科学通报,2018,63(22):2229-2245. WANG Shan, FENG Xiao, WANG Bo. Design and preparation of covalent organic framework materials [J].Chinese Science Bulletin, 2018, 63(22): 2229-2245. [41] DING S Y, WANG W. Covalent organic frameworks: From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. [42] SUN Q, AGUILA B, PERMAN J, et al. Flexibility matters: Cooperative active sites in covalent organic framework and threaded ionic polymer[J]. Journal of the American Chemical Society, 2016, 138(48): 15790-15796. [43] 初佳祺.两种不同维度的共价有机框架构筑及其性质研究[D].上海:上海师范大学,2021:12-15. CHU Jiaqi. The Construction and Properties of Two Types of Covalent Organic Frameworks with Different Dimensions[D]. Shanghai: Shanghai Normal University, 2021: 12-15. [44] NAGAI A, GUO Z Q, FENG X, et al. Pore surface engineering in covalent organic frameworks[J]. Nature Communications, 2011, 2: 536. [45] SHINDE D B, AIYAPPA H B, BHADRA M, et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. Journal of Materials Chemistry A, 2016, 4(7): 2682-2690. [46] SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications, 2016, 52(18): 3690-3693. [47] LI H, FENG X, SHAO P P, et al. Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(10): 5482-5492. [48] MASCHITA J, BANERJEE T, SAVASCI G, et al. Ionothermal synthesis of imide-linked covalent organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(36): 15750-15758. [49] GUAN X Y, MA Y C, LI H, et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(13): 4494-4498. [50] CAMPBELL N L, CLOWES R, RITCHIE L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 2009, 21(2): 204-206. [51] JI W H, GUO Y S, XIE H M, et al. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water[J]. Journal of Hazardous Materials, 2020, 397: 122793 [52] LYU H H, GAO B, HE F, et al. Ball-milled carbon nanomaterials for energy and environmental applications[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9568-9585. [53] BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331. [54] PENG Y W, XU G D, HU Z G, et al. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18505-18512. [55] RASHEED T, KHAN S, AHMAD T, et al. Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: An overview[J]. Chemical Record, 2022, 22(8): 202200062. [56] WERBER J R, DESHMUKH A, ELIMELECH M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environ-mental Science & Technology Letters, 2016, 3(4): 112-120. [57] ARQUEROS C, ZAMORA F, MONTORO C. A perspec-tive on the application of covalent organic frameworks for detection and water treatment[J]. Nanomaterials, 2021, 11(7): 1651. [58] WANG Z, SI Z H, CAI D, et al. Synthesis of stable COF-300 nanofiltration membrane via in-situ growth with ultrahigh flux for selective dye separation[J]. Journal of Membrane Science, 2020, 615: 118466. [59] DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. [60] FANG S Y, SHI X S, WANG X Y, et al. Large-pore covalent organic frameworks for ultra-fast tight ultrafil-tration (TUF)[J]. Journal of Membrane Science, 2021, 637: 119635. [61] 苏义意.基于共价有机骨架(COF-LZU1)复合膜的制备及其在染料废水处理中的研究[D].上海:上海师范大学,2021:9-10. SU Yiyi. Research on Preparation of Covalent Organic Framework (COF-LZU1) based Composite Membranes and Their Application in Dyes Wastewater Treatment[D]. Shanghai: Shanghai Normal University, 2021:9-10. [62] LIU C Y, JIANG Y Z, NALAPARAJU A, et al. Post-synthesis of a covalent organic framework nanofi-ltration membrane for highly efficient water treatment[J]. Journal of Materials Chemistry A, 2019, 7(42): 24205-24210. [63] VALENTINO L, MATSUMOTO M, DICHTEL W R, et al. Development and performance characterization of a polyimine covalent organic framework thin-film composite nanofiltration membrane[J]. Environmental Science & Technology, 2017, 51(24): 14352-14359. [64] MATSUMOTO M, VALENTINO L, STIEHL G M, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films[J]. Chem, 2018, 4(2): 308-317. [65] WANG R, WEI M J, WANG Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination[J]. Journal of Membrane Science, 2020, 604: 118090. [66] WANG R, SHI X S, ZHANG Z, et al. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation[J]. Journal of Membrane Science, 2019, 586: 274-280. [67] KANDAMBETH S, BISWAL B P, CHAUDHARI H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes[J]. Advanced Materials, 2017, 29(2): 1603945. [68] YANG H, WU H, PAN F S, et al. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution[J]. Journal of Membrane Science, 2016, 520: 583-595. [69] ZHANG T, FU X R, WU C, et al. Facile fabrication of covalent organic framework composite membranes via interfacial polymerization for enhanced separation and anti-fouling performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106807. [70] YIN C C, FANG S Y, SHI X S, et al. Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration[J]. Journal of Membrane Science, 2021, 618: 118727. [71] HE Y S, LIN X G. Fabricating compact covalent organic framework membranes with superior performance in dye separation[J]. Journal of Membrane Science, 2021, 637: 119667. [72] XU W T, SUN X J, HUANG M L, et al. Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance[J]. Journal of Environmental Management, 2020, 269: 110758. [73] ZHANG L W, LI Y, WANG Y, et al. Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions[J]. Journal of Hazardous Materials, 2021, 407: 124390. [74] ZHOU W, WEI M, ZHANG X, et al. Fast desalination by multilayered covalent organic framework (COF) nanosheets[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16847-16854. [75] XIAO A K, SHI X S, ZHANG Z, et al. Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination[J]. Journal of Membrane Science, 2021, 624: 119122. [76] LI C, LI S X, ZHANG J M, et al. Emerging sandwich-like reverse osmosis membrane with interfacial assembled covalent organic frameworks interlayer for highly-efficient desalination[J]. Journal of Membrane Science, 2020, 604: 118065. [77] LI Y, WU Q X, GUO X H, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nature Communications, 2020, 11: 599. [78] CHEN A, GUO H Y, ZHOU J H, et al. Polyacry-lonitrile nanofibers coated with covalent organic frameworks for oil/water separation[J]. ACS Applied Nano Materials, 2022, 5(3): 3925-3936. [79] JIANG Y Z, LIU C Y, LI Y H, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. Journal of Membrane Science, 2019, 587: 117177. |