[1] ELRYS S M E, EL-HABIBY F F, ABD E R, et al. Investigation into the effects of yarn structure and yarn count on different types of core-spun yarns[J]. Textile Research Journal, 2022, 92(13/14): 2285-2297. [2] WANG Z, HUANG Y, SUN J, et al. Polyurethane/ cotton/carbon nanotubes core-spun yarn as high reliability stret-chable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces, 2016, 8: 24837-24843. [3] DURAN D, KADOĞLU H. Electromagnetic shielding characterization of conductive woven fabrics produced with silver-containing yarns[J]. Textile Research Journal, 2015, 85(10):1009-1021. [4] AHMAD M R, YAHYA M H M, HASSAN M R, et al. Production of shape memory alloy core-sheath friction yarns[J]. Fibres & Textiles in Eastern Europe, 2013, 21(3): 68-72. [5] 吴佳庆,王迎,郝新敏,等.长丝喂入位置对赛络纺包芯纱结构与性能影响[J].纺织学报,2021,42(8):64-70. WU Jiaqing, WANG Ying, HAO Xinmin, et al. Effect of filament feeding positions on structure and 24 properties of siro-spinning core-spun yarns[J]. Journal of Textile Research, 2021, 42(8):64-70. [6] 王建明,秦晓,薛志俊.不锈钢丝转杯包芯纱的工艺优化[J].棉纺织技术,2012,40(6):49-52. WANG Jianming, QIN Xiao, XUE Zhijun. Processing optimization of stainless steel filament rotor core-spun yarn[J]. Cotton Textile Technology, 2012, 40(6):49-52. [7] BHOWMICK M, RAKSHIT A K, CHATTOPADHYAY S K. Structure-property of DREF-3 friction spun yarn made using twisted staple fibrous core[J]. Journal of Natural Fibers, 2020, 17(2): 235-245. [8] PEI Z, WANG X, LI Z, et al. Effect of process and nozzle structural parameters on the wrapping quality of core-spun yarns produced on a modified vortex spinning system[J]. Textile Research Journal, 2021, 91(15-16):1841-1856. [9] PEI Z, ZHANG Y, CHEN G. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(1):113-118. [10] PEI Z, CHEN G. Numerical investigation on the flow field of a modified vortex spinning system for producing core-spun yarns[J]. Textile Research Journal, 2019, 89(19-20):4028-4045. [11] PEI Z, HE J. Experimental study on the formation of core-spun yarn manufactured on a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(21-22): 4383-4397. [12] PEI Z, XIONG X, HE J, et al. Highly stretchable and durable conductive knitted fabrics for the skins of soft robots[J]. Soft Robotics, 2019, 6(6):687-700. [13] ERDUMLU N, OZIPEK B, OXENHAM W. Vortex spinning technology[J]. Textile Progress, 2012, 44(3/4): 141-174. [14] ZOU Z Y, YU J Y, CHENG L D, et al. A study of generating yarn thin places of murata vortex spinning[J]. Textile Research Journal, 2009, 79(2): 129-137. [15] 邹专勇,俞建勇,薛文良,等.喷气涡流纺纱线细节产生机制分析[J].纺织学报,2008,29(7):21-26. ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Analysis of the cause leading to generation of thin places on the air jet vortex spun yarn[J]. Journal of Textile Research, 2008, 29(7):21-26. [16] 邹专勇.基于流场模拟的喷气涡流纺成纱工艺与纱线结构的相关性研究[D].上海:东华大学,2010. ZOU Zhuanyong. Studies on the Correlation Between the Yarn Formation Process and its Structure Based on Flow Field Simulation in Air-jet Vortex Spinning[D]. Shanghai: Donghua University, 2010. [17] 张肖斌,薛文良,程隆棣.一种喷气涡流纺槽孔型空心锭:CN103290542A[P].2013-09-11 ZHANG Xiaobin, XUE Wenliang, CHENG Longdi. A hollow spindle with grooves and holes for vortex spinning[P]. CN103290542A, 2013-9-11. [18] 裴泽光.一种低落纤的空气涡流纺纱装置.:CN102828289B[P].2014-11-05. PEI Zeguang. A vortex spinning apparatus with reduced fiber loss[P]. CN102828289B, 2014-11-5. [19] MILLER J N. Using the Grubbs and Cochran tests to identify outliers[J]. Analytical Methods, 2015, 7(19): 7948-7950. [20] CHEUNG S H, CHAN W S. Simultaneous confidence intervals for pairwise multiple comparisons in a two-way unbalanced design[J]. Biometrics, 1996, 52(2): 463-472. |