Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (3): 145-157.
Previous Articles Next Articles
Received:
2022-09-19
Online:
2023-05-10
Published:
2023-05-25
WANG Yuea, XU Guopinga, QIU Qiaohuaa, ZHU Lingqia, LIU Taoa,b
通讯作者:
徐国平,E-mail:xuguoping8@126.com
作者简介:
王悦(1999—),女,浙江台州人,硕士研究生,主要从事现代纺织技术和产品开发应用方面的研究。
基金资助:
CLC Number:
王悦, 徐国平, 仇巧华, 朱灵奇, 刘 涛. 聚乙烯醇/海藻酸钠载药复合水凝胶的制备及其抗菌性能#br#[J]. 现代纺织技术, 2023, 31(3): 145-157.
[1]KAMOUN E A, KENAWY E R S, CHEN X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research, 2017, 8(3): 217-233. [2]周润华, 柴益民. 载药水凝胶敷料在创面中的应用[J]. 国际骨科学杂志, 2018, 39(2): 89-92. ZHOU Runhua, CHAI Yimin. Application of drug-loaded hydrogel dressing in wound[J]. International Journal of Orthopedics, 2018, 39(2): 89-92. [3]SUN M, CHENG L D, XU Z X, et al. Preparation and characterization of vancomycin hydrochloride-loaded mesoporous silica composite hydrogels[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 826971. [4]ZHANG D, ZHOU W, WEI B, et al. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing[J]. Carbohydrate Polymers, 2015, 125: 189-199. [5]RICHARDSON W L, HAMMERT W C. Adverse effects of common oral antibiotics[J]. The Journal of Hand Surgery, 2014, 39(5): 989-991. [6]KAUR P, GONDIL V S, CHHIBBER S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics[J]. International Journal of Pharmaceutics, 2019, 572: 118779. [7]MONTASER A S, REHAN M, EL-NAGGAR M E. pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds[J]. International Journal of Biological Macromolecules, 2019, 124: 1016-1024. [8]PAN H, FAN D, DUAN Z, et al. Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing[J]. Materials Science and Engineering: C, 2019, 105: 110118. [9]刘玉, 徐国平, 祝佳琼. PLA/PVA/SA复合纱线的制备与表征[J]. 浙江理工大学学报(自然科学版), 2019, 41(6): 723-729. LIU Yu, XU Guoping, ZHU Jiaqiong. Preparation and characterization of PLA/PVA/SA composite yarns[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2019, 41(6): 723-729. [10]DI DONATO P, TAURISANO V, POLI A, et al. Vegetable wastes derived polysaccharides as natural eco-friendly plasticizers of sodium alginate[J]. Carbohydrate Polymers, 2020, 229: 115427. [11]QIAO K, ZHENG Y, GUO S, et al. Hydrophilic nanofiber of bacterial cellulose guided the changes in the micro-structure and mechanical properties of nf-BC/PVA composites hydrogels[J]. Composites Science and Technology, 2015, 118: 47-54. [12]WANG T W, ZHANG F, ZHAO R, et al. Polyvinyl alcohol/sodium alginate hydrogels incorporated with silver nanoclusters via green tea extract for antibacterial applications[J]. Designed Monomers and Polymers, 2020, 23(1): 118-133. [13]XU M J, QIN M, ZHANG X M, et al. Porous PVA/SA/HA hydrogels fabricated by dual-crosslinking method for bone tissue engineering[J]. Journal of Biomaterials Science, Polymer Edition, 2020, 31(6): 816-831. [14]KIM J O, PARK J K, KIM J H, et al. Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone[J]. International Journal of Pharmaceutics, 2008, 359(1/2): 79-86. [15]郑丹. 用于细胞培养的聚乙烯醇/海藻酸钙水凝胶力学性能的模拟及定量控制[D]. 重庆: 重庆大学, 2014. ZHENG Dan. Mathematical Simulation and Quantitative Control of Polyvinyl Alcohol/Calcium Alginate Hydrogels for Cells Culture in Vitro[D]. Chongqing: Chongqing University, 2014. [16]吴建荣. PVA/SA 复合水凝胶的制备及药物缓释规律的研究[D]. 成都: 四川大学, 2006. WU Jianrong. Preparation of the PVA/SA Blend Hydrogel Bead and Research of Its Drug Sustained Release[D]. Chengdu: Sichuan University, 2006. [17]JOOSTEN U, JOIST A, GOSHEGER G, et al. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis[J]. Biomaterials, 2005, 26(25): 5251-5258. [18]PACE J L, YANG G. Glycopeptides: Update on an old successful antibiotic class[J]. Biochemical Pharmacology, 2006, 71(7): 968-980. [19]SINGH V, KUMAR V, KASHYAP S, et al. Graphene oxide synergistically enhances antibiotic efficacy in vancomycin-resistant Staphylococcus aureus[J]. ACS Applied Bio Materials, 2019, 2(3): 1148-1157. [20]CENSI R, CASADIDIO C, DUBBINI A, et al. Thermosensitive hybrid hydrogels for the controlled release of bioactive vancomycin in the treatment of orthopaedic implant infections[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142: 322-333. [21]TANG Q S, HU J W, LI S, et al. Colorimetric hydrogel indicators based on polyvinyl alcohol/sodium alginate for visual food spoilage monitoring[J]. International Journal of Food Science & Technology, 2022, 57(10): 6867-6880. [22]KIM Y J, MIN J. Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly(vinyl alcohol) [J]. International Journal of Biological Macromolecules, 2021, 193: 1068-1077. [23]SAMPATH U G T M, CHING Y C, CHUAH C H, et al. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel[J]. Cellulose, 2017, 24(5): 2215-2228. [24]THENNAKOON MUDIYANSELAGE SAMPATH U G, CHING Y C, CHUAH C H, et al. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system[J]. European Journal of Pharmaceutical Sciences, 2018, 114: 199-209. [25]BABAEI M, GHAEE A, NOURMOHAMMADI J. Poly (sodium 4-styrene sulfonate)-modified hydroxyapatite nanoparticles in zein-based scaffold as a drug carrier for vancomycin[J]. Materials Science and Engineering: C, 2019, 100: 874-885. [26]KAUR A, PREET S, KUMAR V, et al. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity[J]. Colloids and Surfaces B: Biointerfaces, 2019, 176: 62-69. [27]ZARGHAMI V, GHORBANI M, BAGHERI K P, et al. In vitro bactericidal and drug release properties of vancomycin-amino surface functionalized bioactive glass nanoparticles[J]. Materials Chemistry and Physics, 2020, 241: 122423. [28]YU Z C, LIU J, HE H, et al. Flame-retardant PNIPAAm/sodium alginate/polyvinyl alcohol hydrogels used for fire-fighting application: Preparation and characteristic evaluations[J]. Carbohydrate Polymers, 2021, 255: 117485. [29]CHEN K, ZONG T, CHEN Q, et al. Preparation and characterization of polyvinyl alcohol/sodium alginate/carboxymethyl cellulose composite hydrogels with oriented structure[J]. Soft Materials, 2022, 20(1): 99-108. [30]KHALID I, AHMAD M, MINHAS M U, et al. Preparation and characterization of alginate-PVA-based semi-IPN: Controlled release pH-responsive composites[J]. Polymer Bulletin, 2018, 75(3): 1075-1099. [31]XIAO Q, LU K, TONG Q Y, et al. Barrier properties and microstructure of pullulan-alginate-based films[J]. Journal of Food Process Engineering, 2015, 38(2): 155-161. [32]NIKOLOVA D, SIMEONOV M, TZACHEV C, et al. Polyelectrolyte complexes of chitosan and sodium alginate as a drug delivery system for diclofenac sodium[J]. Polymer International, 2022, 71(6): 668-678. [33]CHEN K, CHEN G, WEI S, et al. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment[J]. Materials Science and Engineering: C, 2018, 91: 579-588. [34]KONG F H, FAN C, YANG Y, et al. 5-hydroxymethylfurfural-embedded poly (vinyl alcohol)/sodium alginate hybrid hydrogels accelerate wound healing[J]. International Journal of Biological Macromolecules, 2019, 138: 933-949. [35]LI W X, WANG D, YANG W, et al. Compressive mechanical properties and microstructure of PVA-HA hydrogels for cartilage repair[J]. RSC Advances, 2016, 6(24): 20166-20172. [36]KHAN Y A, OZALTIN K, BERNAL-BALLEN A, et al. Chitosan-alginate hydrogels for simultaneous and sustained releases of ciprofloxacin, amoxicillin and vancomycin for combination therapy[J]. Journal of Drug Delivery Science and Technology, 2021, 61: 102126. |
[1] | HU Wenfeng, XIA Yichang, GAO Yantao, ZHAO Yi. Preparation of antibacterial eugenol/mesoporous silica nanoparticles and medical potential evaluation [J]. Advanced Textile Technology, 2024, 32(8): 35-45. |
[2] | JIANG Xueni, CAI Weiting, LIN Hong, ZHANG Desuo. Preparation of CS/SA-doped PVA composite fibers based on microfluidic spinning technology and their drug release properties [J]. Advanced Textile Technology, 2024, 32(7): 58-65. |
[3] | Zhang caiqian, Meng Shaoni, Li Junrong. The influence of air flow on the properties of cotton tight fabrics [J]. Advanced Textile Technology, 2024, 32(7): 74-79. |
[4] | WANG Xuhuia, JIANG Wenbina, WANG Jinfenga, b. Finite element analysis of mechanical properties of weft plain knitted fabrics [J]. Advanced Textile Technology, 2024, 32(6): 80-88. |
[5] | JIN Wenzhe, LÜ Wentao, GUO Qing, XU Yuzhen, YU Runze. Fabric image classification algorithm based on improved 3E-LDA [J]. Advanced Textile Technology, 2024, 32(6): 89-96. |
[6] | ZHOU Zi'ao, GAO Shiya, ZHANG Yongli, LI Yuan. Analysis of global silk trade's network characteristics [J]. Advanced Textile Technology, 2024, 32(5): 73-83. |
[7] | ZHANG Luyang, SONG Haibo, MENG Jing, SHI Tingting, LU Yehu. Dynamic thermal and moisture comfort of the bedding system in different conditions [J]. Advanced Textile Technology, 2024, 32(5): 97-104. |
[8] | LIU Chena, YANG Kailua, CHEN Mingxinga, b, WANG Xinyaa, b, ZHANG Weia, b. Research progress in the preparation and application of melt-blown nonwovens [J]. Advanced Textile Technology, 2024, 32(5): 116-129. |
[9] | LIU Xiaohan, WANG Yuxuan, XIE Wen, ZHANG Hongxia. Performance of antibacterial clothing fabric with the composite functions of thermal-moisture comfort [J]. Advanced Textile Technology, 2024, 32(4): 52-59. |
[10] | JIANG Xina, LIU Chengxiaa, b. A multi-direction visual bending test method of fabrics based on 3D scanning [J]. Advanced Textile Technology, 2024, 32(4): 60-67. |
[11] | WANG Jin, CHENG Hepeng, LI Shuai, LU He, CUI Yongzhi, QIAN Cui'e, YU Hechun. Influence of flow field state in fiber delivery tube on the opening and loosening of fiber tows [J]. Advanced Textile Technology, 2024, 32(3): 29-37. |
[12] | SHI Lang a, JIANG Rongfan b. Effect of coating layer number on dielectric properties and wave absorption properties of Ni powder/graphite matrix composites [J]. Advanced Textile Technology, 2024, 32(3): 38-44. |
[13] | GU Shanqia, b, HU Lianxina, b, WANG Zefenga, b, CHEN Xua, LOU Jiongnana, b, LIU Qiloga, b, ZHANG Gegea, b. Research progress of virtual clothing under the background of metaverse [J]. Advanced Textile Technology, 2024, 32(3): 129-140. |
[14] | CHEN Bo, ZHANG Shengyu, YANG Xinglin, ZHANG Junmiao. Stiffness prediction of 3D five-directional circular braided composites with radial yarns based on microstructure [J]. Advanced Textile Technology, 2024, 32(2): 83-95. |
[15] | YU Jianweia, b, HOU Zhanchang, CHEN Chao, YU Zhichenga, b. The rubbing fastness of cashmere fibers dyed with madder vegetable dyes [J]. Advanced Textile Technology, 2024, 32(2): 105-111. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 325
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||