Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (3): 212-224.
Previous Articles Next Articles
Received:
2022-10-28
Online:
2023-05-10
Published:
2023-05-26
作者简介:
杨海贞(1989—),女,河南新乡人,讲师,博士,主要从事功能性纳米纤维纺织品的制备及应用方面的研究。
基金资助:
CLC Number:
YANG Haizhen, WEI Sujie, MA Chuang, ZHOU Zelin, WANG Mengjia, FU Yuan. Research progress of cellulose electrospinning and its derived nanofibers in biomedicine applications[J]. Advanced Textile Technology, 2023, 31(3): 212-224.
杨海贞, 魏肃桀, 马闯, 周泽林, 王蒙佳, 付源. 纤维素静电纺丝及其衍生纳米纤维在生物医学中的应用研究进展[J]. 现代纺织技术, 2023, 31(3): 212-224.
[1]BHAT A H, KHAN I, USMANI M A, et al. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose[J]. International Journal of Biological Macromolecules, 2019, 129: 750-777. [2]SUBBIAH T, BHAT G S, TOCK R W, et al. Electrospinning of nanofibers[J]. Journal of Applied Polymer Science, 2005, 96(2): 557-569. [3]KONWARH R, MISRA M, MOHANTY A K, et al. Diameter-tuning of electrospun cellulose acetate fibers: A Box-Behnken design (BBD) study[J]. Carbohydrate Polymers, 2013, 92(2): 1100-1106. [4]NADAF A, GUPTA A, HASAN N, et al. Recent update on electrospinning and electrospun nanofibers: current trends and their applications[J]. RSC Advances, 2022, 12(37): 23808-23828. [5]DJAFARI PETROUDY S R, ARJMAND KAHAGH S, VATANKHAH E. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw[J]. Carbohydrate Polymers, 2021, 251: 117087. [6]ARIS N I F, RAHMAN N A, WAHID M H, et al. Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples[J]. Royal Society open science, 2020, 7(3): 192050. [7]HUANG W B, TONG Z Y, WANG R Z, et al. A review on electrospinning nanofibers in the field of microwave absorption[J]. Ceramics International, 2020, 46(17): 26441-26453. [8]XU T, WANG Z, DING Y C, et al. Ultralight electrospun cellulose sponge with super-high capacity on absorption of organic compounds[J]. Carbohydrate Polymers, 2018, 179: 164-172. [9]HEILINGOETTER A, SMITH S, MALHOTRA P, et al. Applications of electrospinning for tissue engineering in otolaryngology[J]. The Annals of Otology, Rhinology and Laryngology, 2021, 130(4): 395-404. [10]TAN H L, KAI D, PASBAKHSH P, et al. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering[J]. Colloids and Surfaces B: Biointerfaces, 2020, 188: 110713. [11]LI K N, Wang J N, LIU X Q, et al. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers[J]. Carbohydrate Polymers, 2012, 90(4): 1573-1581. [12]AO C H, NIU Y, ZHANG X M, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2017, 97: 568-573. [13]Abdullah T, SAEED U, MEMIC A, et al. Correction to: Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering[J]. Journal of Polymer Research, 2022, 29(9): 393. [14]HÄRDELIN L, THUNBERG J, PERZON E, et al. Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents[J]. Journal of Applied Polymer Science, 2012, 125(3): 1901-1909. [15]ZHANG X M, WANG C, LIAO M, et al. Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering[J]. Carbohydrate Polymers, 2019, 213: 27-38. [16]谢佳璇, 刘旋, 刘刚. 组织工程支架制备中超临界CO2技术的应用[J]. 中国生物工程杂志, 2022, 42(4): 33-39. XIE Jiaxuan, LIU Xuan, LIU Gang. Research progress of supercritical carbon dioxide technology in tissue engineering scaffolds[J]. China Biotechnology, 2022, 42(4): 33-39. [17]GUNES O C, KARA A, BAYSAN G, et al. Fabrication of 3D printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering[J]. Journal of Biomaterials Applications, 2022, 37(4): 683-697. [18]THUNBERG J, KALOGEROPOULOS T, KUZMENKO V, et al. In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering[J]. Cellulose, 2015, 22(3): 1459-1467. [19]CAO Y J, XIN B J, WU X J, et al. Research on progress and possibility of electrospining of native cellulose and preparation of copper-based antimicrobial fiber[J]. Advanced Materials Research, 2013, 850/851: 53-56. [20]SAMADIAN H, SALEHI M, FARZAMFAR S, et al. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(S1): 964-974. [21]SAMADIAN H, ZAMIRI S, EHTERAMI A, et al. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies[J]. Scientific Reports, 2020, 10: 8312. [22]XIA J, ZHANG H, YU F Q, et al. Superclear, porous cellulose membranes with chitosan-coated nanofibers for visualized cutaneous wound healing dressing[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24370-24379. [23]ABDEL KHALEK M A, ABDEL GABER S A, EL-DOMANY R A, et al. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing[J]. International Journal of Biological Macromolecules, 2021, 193: 1752-1766. [24]LEI L, HUANG W H, LIU K, et al. Trilazad mesylate-loaded electrospun cellulose acetate nanofibrous wound dressings promote diabetic wound healing by modulation of immune response and protection against oxidative damage[J]. Journal of Drug Delivery Science and Technology, 2022, 69: 102863. [25]SUWANTONG O, RUKTANONCHAI U, SUPAPHOL P. In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin[J]. Journal of Biomedical Materials Research Part A, 2010, 94(4): 1216-1225. [26]SUWANTONG O, RUKTANONCHAI U, SUPAPHOL P. Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside[J]. Polymer, 2008, 49(19): 4239-4247. [27]DOOSTAN M, MALEKI H, DOOSTAN M, et al. Effective antibacterial electrospun cellulose acetate nanofibrous patches containing chitosan/erythromycin nanoparticles[J]. International Journal of Biological Macromolecules, 2021, 168: 464-473. [28]KHAN M Q, KHARAGHANI D, SANAULLAH, et al. Fabrication of antibacterial electrospun cellulose acetate/silver-sulfadiazine nanofibers composites for wound dressings applications[J]. Polymer Testing, 2019, 74: 39-44. [29]PRAKASH J, VENKATAPRASANNA K S, BHARATH G, et al. In-vitro evaluation of electrospun cellulose acetate nanofiber containing Graphene oxide/TiO2/Curcumin for wound healing application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127166. [30]WUTTICHAROENMONGKOL P, HANNIROJRAM P, NUTHONG P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials[J]. Polymers for Advanced Technologies, 2019, 30(4): 1135-1147. [31]朱吉昌, 张成霖, 梅瑞娴, 等. 聚乳酸/细菌纤维素/壳聚糖多级结构纤维敷料的制备与表征[J]. 五邑大学学报(自然科学版), 2022, 36(2): 20-28. ZHU Jichang, ZHANG Chenglin, MEI Ruixian, et al. Preparation and characterization of polylactic acid/bacterial cellulose/chitosan multi-stage structure fiber wound dressings[J]. Journal of Wuyi University (Natural Science Edition), 2022, 36(2): 20-28. [32]FONSECA-SANTOS B, SILVA P B, RIGON R B, et al. Formulating SLN and NLC as innovative drug delivery systems for non-invasive routes of drug administration[J]. Current Medicinal Chemistry, 2020, 27(22): 3623-3656. [33]HIVECHi A, BAHRAMI S H, Siegel R A. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone[J]. Materials Science and Engineering: C, 2019, 94: 929-937. [34]TUNGPRAPA S, JANGCHUD I, SUPAPHOL P. Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats[J]. Polymer, 2007, 48(17): 5030-5041. [35]WU X M, BRANFORD-WHITE C J, ZHU L M, et al. Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(8): 2403-2411. [36]HUANG C B, SOENEN S J, VAN GULCK E, et al. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery[J]. Biomaterials, 2012, 33(3): 962-969. [37]XU Y J, LI S S, YUE X P, et al. Review of silver nanoparticles (AgNPs)-cellulose antibacterial composites[J]. BioResources, 2017, 13(1): 2150-2170. [38]PEREIRA A G B, FAJARDO A R, GEROLA A P, et al. First report of electrospun cellulose acetate nanofibers mats with chitin and chitosan nanowhiskers: Fabrication, characterization, and antibacterial activity[J]. Carbohydrate Polymers, 2020, 250: 116954. [39]SHARAF S, EL-NAGGAR M E. Eco-friendly technology for preparation, characterization and promotion of honey bee propolis extract loaded cellulose acetate nanofibers in medical domains[J]. Cellulose, 2018, 25(9): 5195-5204. [40]PHAN D N, KHAN M Q, NGUYEN V C, et al. Investigation of mechanical, chemical, and antibacterial properties of electrospun cellulose-based scaffolds containing orange essential oil and silver nanoparticles[J]. Polymers, 2021, 14(1): 85. [41] SRIVASTAVA P, LAKSHMI G S, SRI S, et al. Potential of electrospun cellulose acetate nanofiber mat integrated with silver nanoparticles from Azadirachta indica as antimicrobial agent[J]. Journal of Polymer Research, 2020, 27(11): 350. [42]TOMASZ C, ANGELIKA W, IRENA M, et al. Fabrication of photoactive electrospun cellulose acetate nanofibers for antibacterial applications[J]. Energies, 2021, 14(9): 2598. [43]NTHUNYA L N, MASHEANE M L, MALINGA S P, et al. Greener approach to prepare electrospun antibacterial β-cyclodextrin/cellulose acetate nanofibers for removal of bacteria from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 153-160. [44]JATOI A W, KIM I S, NI Q Q. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities[J]. Materials Science and Engineering: C, 2019, 98: 1179-1195. [45]ULLAH A, SAITO Y, ULLAH S, et al. Bioactive Sambong oil-loaded electrospun cellulose acetate nanofibers: Preparation, characterization, and in-vitro biocompatibility[J]. International Journal of Biological Macromolecules, 2021, 166: 1009-1021. [46]XIAO Y Q, CAO Y J, XIN B J, et al. Fabrication and characterization of electrospun cellulose/polyacrylonitrile nanofibers with Cu(II) ions[J]. Cellulose, 2018, 25(5): 2955-2963. [47]SAWICKA K M, GOUMA P. Electrospun composite nanofibers for functional applications[J]. Journal of Nanoparticle Research, 2006, 8(6): 769-781. [48]KLEMM D, SCHUMANN D, KRAMER F, et al. Nanocellulose materials-different cellulose, different functionality[J]. Macromolecular Symposia, 2009, 280(1): 60-71. [49]HIVECHI A, HAJIR B S, SIEGEL R A. Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers[J]. International Journal of Biological Macromolecules, 2019, 124: 411-417. [50]KHATRI Z, WEI K, KIM B S, et al. Effect of deacetylation on wicking behavior of co-electrospun cellulose acetate/polyvinyl alcohol nanofibers blend[J]. Carbohydrate Polymers, 2012, 87(3): 2183-2188. [51]CAO X W, ZHU M T, FAN F W, et al. All-cellulose composites based on jute cellulose nanowhiskers and electrospun cellulose acetate (CA) fibrous membranes[J]. Cellulose, 2020, 27(3): 1385-1391. [52]张雅宁, 张辉, 宽俊玲, 等. 静电纺制备PAN/MIL-53(Fe)/纤维素口罩过滤层[J]. 纺织高校基础科学学报, 2022, 35(2): 1-12. ZHANG Yaning, ZHANG Hui, KUAN Junling, et al. Preparation of PAN/MIL-53 (Fe)/cellulose mask filter layer by electrospinning technique[J]. Basic Sciences Journal of Textile Universities, 2022, 35(2): 1-12. [53]BULOTA M, CIUZAS D, KRUGLY E, et al. Electrospun cellulose fiber-reinforced UV-curable composites with tunable properties[J]. Industrial Crops and Products, 2022, 176: 114306. [54]MARIA MANZINE COSTA L, MOLINA DE OLYVEIRA G, Basmaji P, et al. Nanopores structure in electrospun bacterial cellulose[J]. Journal of Biomaterials and Nanobiotechnology, 2012, 3(1): 92-96. [55]MUNAWEERA I, ALIEV A, BALKUS JR K J. Electrospun cellulose acetate-garnet nanocomposite magnetic fibers for bioseparations[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 244-251. [56]ROJANARATA T, PLIANWONG S, SU-UTA K, et al. Electrospun cellulose acetate nanofibers as thin layer chromatographic media for eco-friendly screening of steroids adulterated in traditional medicine and nutraceutical products[J]. Talanta, 2013, 115: 208-213. |
[1] | HUANG Xinxiang, QIAN Jianhua, Xu Yuqi, FAN Yangrui. Analysis of cellulose acetate modifications on PVC/CPVC blended flat sheet membranes [J]. Advanced Textile Technology, 2024, 32(8): 67-74. |
[2] | Zhang caiqian, Meng Shaoni, Li Junrong. The influence of air flow on the properties of cotton tight fabrics [J]. Advanced Textile Technology, 2024, 32(7): 74-79. |
[3] | WANG Xuhuia, JIANG Wenbina, WANG Jinfenga, b. Finite element analysis of mechanical properties of weft plain knitted fabrics [J]. Advanced Textile Technology, 2024, 32(6): 80-88. |
[4] | JIN Wenzhe, LÜ Wentao, GUO Qing, XU Yuzhen, YU Runze. Fabric image classification algorithm based on improved 3E-LDA [J]. Advanced Textile Technology, 2024, 32(6): 89-96. |
[5] | ZHOU Jiabao, LIU Tao, QIU Qiaohua, ZHU Lingqi, WANG Yanmin, DIN Xinbo. Preparation and antibacterial properties of silk fibroin-polyaniline composite nanofiber membrane [J]. Advanced Textile Technology, 2024, 32(5): 9-17. |
[6] | LI Jinchao, MEI Shuo, DU Yujia, MA Biao, LI Hong. Preparation and performance of polyurethane nanofiber membrane for air filtration#br# [J]. Advanced Textile Technology, 2024, 32(5): 18-22. |
[7] | QI Qinghuan, SHI Xiaohan, ZHANG Qing, YUAN Baokui, ZHOU Yuman. Construction and thermal conductivity of PVDF/Ag fiber membranes with high thermal conductivity [J]. Advanced Textile Technology, 2024, 32(5): 23-31. |
[8] | ZHOU Zi'ao, GAO Shiya, ZHANG Yongli, LI Yuan. Analysis of global silk trade's network characteristics [J]. Advanced Textile Technology, 2024, 32(5): 73-83. |
[9] | ZHANG Luyang, SONG Haibo, MENG Jing, SHI Tingting, LU Yehu. Dynamic thermal and moisture comfort of the bedding system in different conditions [J]. Advanced Textile Technology, 2024, 32(5): 97-104. |
[10] | LIU Chena, YANG Kailua, CHEN Mingxinga, b, WANG Xinyaa, b, ZHANG Weia, b. Research progress in the preparation and application of melt-blown nonwovens [J]. Advanced Textile Technology, 2024, 32(5): 116-129. |
[11] | JIANG Xina, LIU Chengxiaa, b. A multi-direction visual bending test method of fabrics based on 3D scanning [J]. Advanced Textile Technology, 2024, 32(4): 60-67. |
[12] | WANG Jin, CHENG Hepeng, LI Shuai, LU He, CUI Yongzhi, QIAN Cui'e, YU Hechun. Influence of flow field state in fiber delivery tube on the opening and loosening of fiber tows [J]. Advanced Textile Technology, 2024, 32(3): 29-37. |
[13] | SHI Lang a, JIANG Rongfan b. Effect of coating layer number on dielectric properties and wave absorption properties of Ni powder/graphite matrix composites [J]. Advanced Textile Technology, 2024, 32(3): 38-44. |
[14] | XING Dongfeng, LI Yunhuan, GAO Yu, WANG Fuxing, FU Qiang, JIN Dalai. Preparation and hydrophilic properties of star-shaped PLLA-PEG block copolymer fiber membranes [J]. Advanced Textile Technology, 2024, 32(3): 45-52. |
[15] | GU Shanqia, b, HU Lianxina, b, WANG Zefenga, b, CHEN Xua, LOU Jiongnana, b, LIU Qiloga, b, ZHANG Gegea, b. Research progress of virtual clothing under the background of metaverse [J]. Advanced Textile Technology, 2024, 32(3): 129-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||