Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (5): 66-75.
Previous Articles Next Articles
Received:
2023-03-13
Online:
2023-09-10
Published:
2023-09-20
About author:
陈钦钦(1997—),女,杭州人,硕士研究生,主要从事细菌纤维素方面的研究。
通讯作者:
付飞亚,E-mail:fufar@163.com
基金资助:
CLC Number:
CHEN Qinqin, XU Zhaomei, MA Tingfang, FU Feiya, LIU Xiangdong. Preparation and properties of bacterial cellulose nanofiber membranes and fibers[J]. Advanced Textile Technology, 2023, 31(5): 66-75.
陈钦钦, 徐兆梅, 马廷方, 付飞亚, 刘向东. 细菌纤维素纳米纤维膜及纤维的制备与性能[J]. 现代纺织技术, 2023, 31(5): 66-75.
[1] 汪丽粉, 李政, 贾士儒, 等. 细菌纤维素性质及应用的研究进展[J]. 微生物学通报, 2014, 41(8): 1675-1683. WANG Lifen, LI Zheng, JIA Shiru, et al. The research progress in characteristics and applications of bacterial cellulose[J]. Microbiology China, 2014, 41(8): 1675-1683. [2] BLANCO PARTE F G, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology, 2020, 40(3): 397-414. [3] SRIPLAI N, PINITSOONTORN S. Bacterial cellulose-based magnetic nanocomposites: A review[J]. Carbohydrate Polymers, 2021, 254: 117228. [4] 袁微微, 唐海哲. 静电纺细菌纤维素基复合材料研究进展[J]. 轻纺工业与技术, 2022, 51(5): 109-111. YUAN Weiwei, TANG Haizhe. Research progress on electrostatically spun bacterial cellulose-based composites[J]. Light and Textile Industry and Technology, 2022, 51(5): 109-111. [5] 白雪梦, 王璐瑶, 郑雅慧, 等. 纤维素/无机复合材料:纤维素及其衍生物的矿化与应用[J]. 复合材料科学与工程, 2022, 339(4): 120-128. BAI Xuemeng, WANG Luyao, ZHENG Yahui, et al. Organic/inorganic composite materials: Mineralization and application of cellulose and its derivatives[J]. Composites Science and Engineering, 2022, 339(4): 120-128. [6] BINELLI M R, RVHS P A, PISATURO G, et al. Living materials made by 3D printing cellulose-producing bacteria in granular gels[J]. Biomaterials Advances, 2022, 141: 213095. [7] CAZON P, VAZQUEZ M. Bacterial cellulose as a biodegradable food packaging material: A review[J]. Food Hydrocolloids, 2021, 113: 106530. [8] 田萃钰, 陆赵情, 宁逗逗, 等. 多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能[J]. 复合材料学报, 2023, 40(2): 1096-1104. TIAN Cuiyu, LU Zhaoqing, NING Doudou, et al. Preparation and mechanical properties of multi-walled carbon nanotubes-bacterial cellulose composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1096-1104. [9] UL-ISLAM M, KHAN S, ULLAH M W, et al. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states[J]. International Journal of Biological Macromolecules, 2019, 137: 247-252. [10] PHISALAPHONG M, SUWANMAJO T, SANGTHERAPITIKUL P. Novel nanoporous membranes from regenerated bacterial cellulose[J]. Journal of Applied Polymer Science, 2008, 107(1): 292-299. [11] CHEN P, KIM H S, KWON S M, et al. Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning[J]. Current Applied Physics, 2009, 9(2): e96-e99. [12] FERGUSON A, KHAN U, WALSH M, et al. Understanding the dispersion and assembly of bacterial cellulose in organic solvents[J]. Biomacromolecules, 2016, 17(5): 1845-1853. [13] HUANG D, LI D, MO K W, et al. Top-down fabrication of biodegradable multilayer tunicate cellulose films with controlled mechanical properties[J]. Cellulose, 2021, 28(16): 10415-10424. [14] ZHU M W, JIA C, Wang Y L, et al. Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28566-28571. [15] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [16] 张亚婷, 严心娥, 刘国阳, 等. 煤基石墨烯系列材料的可控制备及其在CO2还原过程中的应用进展[J]. 洁净煤技术, 2022, 28(8): 1-14. ZHANG Yating, YAN Xin'e, LIU Guoyang, et al. Research progress on controlled preparation of coal based graphene series materials and its application in CO2 reduction process[J]. Clean Coal Technology, 2022, 28(8): 1-14. [17] 崔静磊, 桂晓光, 王茜, 等. 纤维素改性材料对重金属吸附性能的研究进展[J]. 功能材料, 2021, 52(3): 3050-3059. CUI Jinglei, GUI Xiaoguang, WANG Qian, et al. Research progress of the adsorption properties of cellulose modified materials for heavy metals[J]. Journal of Functional Materials, 2021, 52(3): 3050-3059. [18] 马光瑞, 和铭, 杨桂花, 等. 低共熔溶剂体系预处理制备纤维素纳米纤丝及其性能研究[J]. 林产化学与工业, 2021, 41(4): 69-76. MA Guangrui, HE Ming, YANG Guihua, et al. Preparation of cellulose nanofibril by the pretreatment with deep eutectic solvent system[J]. Chemistry and Industry of Forest Products, 2021, 41(4): 69-76. [19] 朱亚崇, 吴朝军, 于冬梅, 等. 纳米纤维素制备方法的研究现状[J]. 中国造纸, 2020, 39(9): 74-83. ZHU Yachong, WU Zhaojun, YU Dongmei, et al. Research status of nanocellulose preparation methods[J]. China Pulp & Paper, 2020, 39(9): 74-83. [20] 王佳溪, 苏艳群, 刘金刚. 阳离子化纤维素纳米纤丝的制备技术及应用进展[J]. 中国造纸学报, 2022,37(2): 94-101. WANG Jiaxi, SU Yanqun, LIU Jingang. Advances in preparation and application of cationic cellulose nanofibril[J]. Transactions of China Pulp and Paper, 2022,37(2): 94-101. [21] WU Z T, CHEN S Y, WU R L, et al. Top-down peeling bacterial cellulose to high strength ultrathin films and multifunctional fibers[J]. Chemical Engineering Journal, 2020, 391: 123527. [22] CAI J, ZHANG L, ZHOU J, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: Structure and properties[J]. Advanced Materials, 2007, 19(6): 821-825. [23] ZHU K K, WANG Y, LU A, et al. Cellulose/chitosan composite multifilament fibers with two-switch shape memory performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6981-6990. [24]WANG S, LI T, CHEN C J, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials, 2018, 28(24): 1707491. [25] 张晓颖, 荣新山, 徐吉成, 等. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136. ZHANG Xiaoying, RONG Xinshan, XU Jicheng, et al. Effect of surface modification of basalt fiber on biofilm attachment[J]. Journal of Materials Engineering, 2019, 47(5): 129-136. [26] ILLA M P, SHARMA C S, KHANDELWAL M. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions[J]. Journal of Materials Science, 2019, 54(18): 12024-12035. [27] ABRAL H, CHAIRANI M K, RIZKI M D, et al. Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions[J]. Journal of Materials Research and Technology, 2021, 11: 896-904. [28] USHA RANI M, UDAYASANKAR K, ANU APPAIAH K A. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp[J]. Journal of Applied Polymer Science, 2011, 120(5): 2835-2841. [29] VELAZQUEZ G, HERRERA-GOMEZ A, MARTIN-POLO M O. Identification of bound water through infrared spectroscopy in methylcellulose[J]. Journal of Food Engineering, 2003, 59(1): 79-84. [30] 付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6): 54-64. FU Shiyu. Progress in cellulose research[J]. China Pulp & Paper, 2019, 38(6): 54-64. [31] 朱杰君, 孙海斌, 吴耀政, 等. 石墨烯的制备、表征及其在透明导电膜中的应用[J]. 物理化学学报, 2016, 32(10): 2399-2410. ZHU Jiejun, SUN Haibin, WU Yaozheng, et al. Graphene: synthesis, characterization and application in transparent conductive films[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2399-2410. [32] ZHANG M H, CHEN S Y, SHENG N, et al. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior[J]. Nanoscale, 2021, 13(17): 8126-8136. [33] ROMAN M, WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5(5): 1671-1677. [34] BARUD H S, RIBEIRO C A, CRESPI M S, et al. Thermal characterization of bacterial cellulose–phosphate composite membranes[J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 815-818. [35] 薛元, 曹艳. 环锭纺加捻三角区纤维转移机理及其运动规律分析[J]. 纺织学报, 2005,26(5): 31-33. XUE Yuan, CAO Yan. Migration mechanism of fibers and their movement analysis in the twisting triangular space of ring spinning[J]. Journal of Textile Research, 2005,26 (5): 31-33. |
[1] | LI Jinchao, MEI Shuo, DU Yujia, MA Biao, LI Hong. Preparation and performance of polyurethane nanofiber membrane for air filtration#br# [J]. Advanced Textile Technology, 2024, 32(5): 18-22. |
[2] | CHEN Xingdong, LIU Xinjin. Effect of twist coefficient ratio on the performance of strands and fabric [J]. Advanced Textile Technology, 2024, 32(5): 41-50. |
[3] | ZHANG Jiapenga, WANG Yana, b, YAO Jumingb, c, JIRI Militky, DANA Kremenakova, ZHU Guochenga, b, . Preparation and properties of CA/PVA nanofibrous membrane with high water resistance [J]. Advanced Textile Technology, 2024, 32(2): 96-104. |
[4] | LIU Lu, YANG Yi, LIU Fei, HUANG Liqian, JIANG Qiuran. Preparation of a highly sensitive strain sensor based on "furrow-ridge" structured TPU fibers [J]. Advanced Textile Technology, 2024, 32(11): 15-21. |
[5] | WANG Qi, CHEN Mingxing, ZHANG Wei WU Yanjie, WANG Xinya. Research progress in electrospun Janus nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 1-10. |
[6] | GE Yafenga, WANG Yan, XU Chuqia, JIRI Militky, DANA Kremenakova, ZHU Guocheng, . Preparation and performance of highly hydrophilic chitosan nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 11-19. |
[7] | ZHANG Yanan, XU Bingjie, LI Mengwei, REN Haotian, GAO Yujie, WANG Yijia, WU Jindan, . Preparation and antibacterial properties of loaded aggregation-induced emission photosensitizers nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 31-39. |
[8] | PAN Chenhao, SHI Lei, FU Yaqin. reparation and electrochemical performance of high strain graphene yarns with electrochemical properties [J]. Advanced Textile Technology, 2023, 31(5): 157-164. |
[9] | LIU Yanbo, ZHANG Tianyi, PANG Rongrong, CHEN Zhijun, YANG Bo. Preparation and performance of laminated composite acid-proof fabrics [J]. Advanced Textile Technology, 2023, 31(5): 240-248. |
[10] | CHENG Wei, ZHANG Jing, XU Chengshu, REN Yan. Preparation of wool keratin and polyvinyl alcohol composite fiber membrane and the exploration as surgical-mask filtration materials [J]. Advanced Textile Technology, 2023, 31(4): 74-83. |
[11] | LI Dongliang, LIU Huiying, LI Lele, SUN Baojie, JIANG Liang, ZHOU Yanfen, CHEN Shaojuan, MA Jianwei. Preparation and properties of SBS/CNTs elastic conductive composite fiber [J]. Advanced Textile Technology, 2023, 31(3): 121-127. |
[12] | WANG Zhankai, XU Shilong, YANG Shiyu, HU Yi, HU Liu. Preparation of zinc phthalocyanine grafted cellulose nanofiber and its dye degradation properties [J]. Advanced Textile Technology, 2023, 31(1): 204-212. |
[13] | WANG Qiuyan, GU Zhiqi, XU Mingtao, ZHANGYan, WANGPing, LI Yuanyuan. Preparation and properties of modified carbon nanotube yarn strain sensors with different braiding angles [J]. Advanced Textile Technology, 2022, 30(4): 70-79. |
[14] | ZHAO Weitao, YAO Xuefeng, Yan Yi, ZHANG Desuo, LIN Hong, CHEN Yuyue. Preparation and properties of rGO/AgNPs composite modified PVA flexible strain sensing films [J]. Advanced Textile Technology, 2022, 30(4): 80-88. |
[15] | JIA Ziqi, WANG Chen, ZHAO Tiantian, LIU Yang. Preparation and photocatalytic performance of N-doped graphene oxide/TiO2/PAN composite nanofiber membranes [J]. Advanced Textile Technology, 2022, 30(3): 97-107. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 884
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 204
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||