Advanced Textile Technology ›› 2024, Vol. 32 ›› Issue (1): 130-139.
Online:
2024-01-10
Published:
2024-01-30
通讯作者:
严小飞,E-mail: yanxf@zstu.edu.cn
作者简介:
邵烨华(2000—),女,浙江宁波人,硕士研究生,主要从事功能纤维及复合材料制备方面的研究;
基金资助:
CLC Number:
SHAO Yehua, GAO Zhaoyang, WANG Longfei, TIAN Wei, QI Dongming, YAN Xiaofei. Research and application progress of nano-filler reinforced composites with polylactic acid[J]. Advanced Textile Technology, 2024, 32(1): 130-139.
邵烨华, 高召阳, 王龙飞, 田伟, 戚栋明, 严小飞. 聚乳酸纳米填料增强复合材料的应用研究进展[J]. 现代纺织技术, 2024, 32(1): 130-139.
[1]李求恩. 生物可降解材料研究进展及国内外产业现状分析[J]. 湖南包装, 2021, 36(2): 31-34. LI Qiu’en. Research progress of biodegradable materials and analysis of domestic and foreign industry status[J]. Hunan Packaging, 2021, 36(2): 31-34. [2]SAMIR A, ASHOUR F H, HAKIM A A, et al. Recent advances in biodegradable polymers for sustainable applications[J]. NPJ Materials Degradation, 2022, 6: 68. [3]RAJESHKUMAR G, SESHADRI S A, DEVNANI G, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites: A comprehensive review[J]. Journal of Cleaner Production, 2021, 310: 127483. [4]ILYAS R A, ZUHRI M Y M, AISYAH H A, et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications[J]. Polymers, 2022, 14(1): 202. [5]ILYAS R A, SAPUAN S M, HARUSSANI M M, et al. Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications[J]. Polymers, 2021, 13(8): 1326. [6]ZHAO X, HU H, WANG X, et al. Super tough poly (lactic acid) blends: A comprehensive review[J]. RSC Advances, 2020, 10(22): 13316-13368. [7]BALLA E, DANIILIDIS V, KARLIOTI G, et al. Poly(lactic acid): A versatile biobased polymer for the future with multifunctional properties: From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications[J]. Polymers, 2021, 13(11): 1822. [8]MURARIU M, DUBOIS P. PLA composites: From production to properties[J]. Advanced Drug Delivery Reviews, 2016, 107: 17-46. [9]许明奕,逄宇帆,刑涛,等. 聚乳酸合成方法的研究进展及市场分析[J]. 应用化工, 2022, 51(12): 3614-3618, 3624. XU Mingyi, PANG Yufan, XING Tao, et al. The progress and market analysis of synthetic methods of polylactic acid[J]. Applied Chemical Industry, 2022, 51(12): 3614-3618, 3624. [10]辛颖,王天成,金书含,等. 聚乳酸市场现状及合成技术进展[J]. 现代化工, 2020, 40(S1): 71-74, 78. XIN Ying, WANG Tiancheng, JIN Shuhan, et al. Present market situation and synthesis technology advances of PLA[J]. Modern Chemical Industry, 2020, 40(S1): 71-74, 78. [11]LI G, ZHAO M, XU F, et al. Synthesis and biological application of polylactic acid[J]. Molecules, 2020, 25(21): 5023. [12]谢彬,白茸茸,孙华山,等. 聚乳酸塑料合成、生物降解及其废弃物处置的研究进展[J]. 生物工程学报, 2023, 39(5): 1912-1929. XIE Bin, BAI Rongrong, SUN Huashan, et al. Synthesis, biodegradation and waste disposal of polylactic acid plastics: a review[J]. Chinese Journal of Biotechnology, 2023,39(5):1912-1929. [13]ZAABA N F, JAAFAR M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation[J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075. [14]FARAH S, ANDERSON D G, LANGER R. Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107: 367-392. [15]LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820-852. [16]CARTIER L,OKIHARA T,IKADA Y, et al. Epitaxial crystallization and crystalline polymorphism of polylactides[J]. Polymer, 2000, 41(25): 8909-8919. [17]SAEIDLOU S, HUNEAULT M A, LI H, et al. Poly(lactic acid) crystallization[J]. Progress in Polymer Science, 2012, 37(12): 1657-1677. [18]刘淑强,张蕊萍,贾虎生,等.可生物降解聚乳酸长丝的熔融纺丝工艺[J]. 纺织学报, 2012, 33(11): 11-14. LIU Shuqiang, ZHANG Ruiping, JIA Husheng, et al. Melt spinning process of biodegradable PLA filaments[J]. Journal of Textile Research, 2012, 33(11): 11-14. [19]朱娅楠,潘志娟,汪吉艮,等. PLA长丝的基本结构与物理性能[J]. 现代丝绸科学与技术, 2015, 30(6): 201-203. ZHU Yanan, PAN Zhijuan, WANG Jigen, et al. Basic structure and physical properties of PLA filament[J]. Modern Silk Science & Technology, 2015, 30(6): 201-203. [20]RAQUEZ J M, HABIBI Y, MURARIU M, et al. Polylactide (PLA)-based nanocomposites[J]. Progress in Polymer Science, 2013, 38(10/11): 1504-1542. [21]郭慧君,黄禹璋,蒋迪,等. 纳米材料对纤维复合材料机械性能影响[J]. 山东化工, 2022, 51(6): 106-108. GUO Huijun, HUANG Yuzhang, JIANG Di, et al. Effects of nanoparticles and carbon nanomaterials on the mechanical properties of fiber composites[J]. Shandong Chemical Industry, 2022, 51(6): 106-108. [22]包晨露. 石墨烯及其典型聚合物纳米复合材料的制备方法、结构与机理研究[D]. 合肥:中国科学技术大学, 2012: 32-43. BAO Chenlu. Preparation, structure and mechanism research of graphene and typical polymer-based nanocomposites[D]. Hefei: University of Science and Technology of China, 2012: 32-43. [23]陈艳华. 聚合物/石墨烯纳米复合材料制备与性能研究[D]. 苏州:苏州大学, 2013: 42-47. CHEN Yanhua. Preparation and Characterization of Polymer/Graphene Nanocomposites[D]. Suzhou: Soochow University, 2013: 42-47. [24]赵阳,苗宗成,张永明,等. 聚乳酸/氧化石墨烯复合材料的制备及其性能研究[J]. 化工新型材料, 2022, 50(11): 83-86. ZHAO Yang, MIAO Zongcheng, ZHANG Yongming, et al. Synthesis and properties of polylactic acid/graphene oxide composites[J]. New Chemical Materials, 2022, 50(11): 83-86. [25]SHI S H, PENG Z L, JING J J, et al. Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15565-15575. [26]WANG J F, JIN X X, LI C H, et al. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength[J]. Chemical Engineering Journal, 2019, 370: 831-854. [27]胡松青,吕强,王志坤,等. 碳纳米管/聚合物复合材料界面结合性能的研究进展[J]. 复合材料学报, 2017, 34(1): 12-22. HU Songqing, LÜ Qiang, WANG Zhikun, et al. Advances in the interfacial bonding characteristics of carbonnanotube/polymer composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 12-22. [28]吴改红. 碳纳米管胶囊/聚乳酸复合纤维的制备及结构性能研究[D]. 上海:东华大学, 2017: 95-105. WU Gaihong. Research on Preparation, Structure and Properties of Carbon Nanotubes Nanocapsule/Poly (Lactic Acid) Composite Fiber[D]. Shanghai: Donghua University, 2017: 95-105. [29]HUANG A, SONG X C, LIU F, et al. Facile preparation of anisotropic PLA/CNT nanocomposites by hot and cold rolling processes for improving mechanical and conductive properties[J]. Journal of Applied Polymer Science, 2022, 139(33): 13. [30]史军华,姚进,李知函,等. 改性纳米纤维素/聚乳酸复合材料的制备及性能[J]. 精细化工, 2020, 37(1): 45-50. SHI Junhua, YAO Jin, LI Zhihan, et al. Preparation and performance of modified cellulose nanocrystal/poly(lacticacid) composite materials[J]. Fine Chemicals, 2020, 37(1): 45-50. [31]AIGAJE E, RIOFRIO A, BAYKARA H. Processing, properties, modifications, and environmental impact of nanocellulose/biopolymer composites: A review[J]. Polymers, 2023, 15(5): 1219. [32] KIM S J, EOM T G, KANG S, et al. Sustainable and high‐performance composites based on glycidyl methacrylate‐grafted poly (lactic acid) and cellulose nanofibrils[J]. Journal of Applied Polymer Science, 2023, 140(15): 53732. [33]鄂毅,邹姝燕,毛晨,等. 聚乳酸/银纳米线纳米复合材料的制备与结晶行为[J]. 高分子材料科学与工程, 2022, 38(2): 80-87. E Yi, ZOU Shuyan, MAO Chen, et al. Preparation and crystallization behavior of polylactic acid/AgNWs nanocomposites[J]. Polymer Materials Science & Engineering, 2022, 38(2): 80-87. [34]MURARIU M, DOUMBIA A, BONNAUD L, et al. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties[J]. Biomacromolecules, 2011, 12(5): 1762-1771. [35] BOARINO A, SCHREIER A, LETERRIER Y, et al. Uniformly dispersed poly (lactic acid)-grafted lignin nanoparticles enhance antioxidant activity and UV-barrier properties of poly (lactic acid) packaging films[J]. ACS Applied Polymer Materials, 2022, 4(7): 4808-4817. [36]KONGKAOROPTHAM P, PIROONPAN T, HEMVICHIAN K, et al. Poly (ethylene glycol) methyl ether methacrylate‐graft‐chitosan nanoparticles as a biobased nanofiller for a poly (lactic acid) blend: Radiation‐induced grafting and performance studies[J]. Journal of Applied Polymer Science, 2015, 132(37): 42522. [37]HE H L, PANG Y Z, DUAN Z W, et al. The strengthening and toughening of biodegradable poly (lactic acid) using the SiO2-PBA core-shell nanoparticle[J]. Materials, 2019, 12(16): 2510. [38]IGLESIAS-MONTES M L, SOCCIO M, SIRACUSA V, et al. Chitin nanocomposite based on plasticized poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) blends as fully biodegradable packaging materials[J]. Polymers, 2022, 14(15): 3177. [39] YAKDOUMI F Z, HADJ-HAMOU A S, RAHOUI N, et al. Polylactic acid nanocomposites containing functionalized multiwalled carbon nanotubes as antimicrobial packaging materials[J]. International Journal of Biological Macromolecules, 2022, 213: 55-69. [40]REN H, XU Z, GAO M, et al. Preparation of microcrystalline cellulose from agricultural residues and their application as polylactic acid/microcrystalline cellulose composite films for the preservation of Lanzhou lily[J]. International Journal of Biological Macromolecules, 2023, 227: 827-838. [41]FATHIMA P E, PANDA S K, ASHRAF P M, et al. Polylactic acid/chitosan films for packaging of Indian white prawn (Fenneropenaeus indicus)[J]. International Journal of Biological Macromolecules, 2018, 117: 1002-1010. [42] LI X, CHEN S, ZHANG XY, et al. Poly-l-lactic acid/graphene electrospun composite nanofibers for wearable sensors[J]. Energy Technology, 2020, 8(5): 1901252 [43]RYU W M, LEE Y, SON Y. Et al. Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing[J]. Advanced Fiber Materials, 2023: 1-13. [44]HONG Z, ZHANG P, HE C, et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility[J]. Biomaterials, 2005, 26(32): 6296-6304. [45]KANAK N A, SHAHRUZZAMAN M, ISLAM M S, et al. Fabrication of electrospun PLA-nHAp nanocomposite for sustained drug release in dental and orthopedic applications[J]. Materials, 2023, 16(10): 3691. [46]PATEL D K, DUTTA S D, JUN H X, et al. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering[J]. International Journal of Biological Macromolecules, 2020, 162: 1429-1441. |
[1] | LUO Chunxu, LI Hui, WU Minyong, XIONG Xiaoman, LIU Keshuai. Preparation of basalt-based composite yarns and their flame retardant fabric properties [J]. Advanced Textile Technology, 2024, 32(2): 57-62. |
[2] | CHEN Bo, ZHANG Shengyu, YANG Xinglin, ZHANG Junmiao. Stiffness prediction of 3D five-directional circular braided composites with radial yarns based on microstructure [J]. Advanced Textile Technology, 2024, 32(2): 83-95. |
[3] | PAN Leilei, FAN Shuo, WANG Yuxuan, ZHANG Hongxia. Research status and progress of textile materials with sound-absorbing and sound insulation functions [J]. Advanced Textile Technology, 2023, 31(6): 216-225. |
[4] | WANG Yongfeng, JIANG Peiqing, ZHANG Bo, CAI Jundong, ZHANG Huapeng, . Numerical analysis of the effects of interface bonding properties of backplates on the ballistic performance of SiC/UHMWPE composite armor [J]. Advanced Textile Technology, 2023, 31(5): 1-11. |
[5] | . Preparation of SiO2-Ag aerogel/PLA composite melt-blown nonwoven materials and the air filtration performance thereof [J]. Advanced Textile Technology, 2023, 31(5): 49-57. |
[6] | CHEN Fan, JIN Wanhui, WANG Tao. Preparation of a unidirectional water transport Janus composite cotton fabric and its cooling performance [J]. Advanced Textile Technology, 2023, 31(5): 190-197. |
[7] | LIU Yanbo, ZHANG Tianyi, PANG Rongrong, CHEN Zhijun, YANG Bo. Preparation and performance of laminated composite acid-proof fabrics [J]. Advanced Textile Technology, 2023, 31(5): 240-248. |
[8] | WANG Yina, DING Xinboa, LIU Taoa, b, QIU Qiaohuaa, WANG Yanminga. Preparation and conductive properties of flexible sensors based on silk fibroin/MXene composite nanofiber membranes [J]. Advanced Textile Technology, 2023, 31(4): 63-73. |
[9] | ZHOU Huimin, DING Xinbo, LIU Tao, QIU Qiaohua. Preparation of the cellulose/MXene composite aerogel and its adsorption mechanism for methylene blue [J]. Advanced Textile Technology, 2023, 31(4): 93-102. |
[10] | HU Manyu, JIN Xiaoke, TIAN Wei, HUANG Kunzhen, SHAO Lingda, ZHU Chengyan, . Hot-pressing process and structure of laminated composite fabrics with EVA hot-melt adhesive films [J]. Advanced Textile Technology, 2023, 31(4): 173-182. |
[11] | LIU Peng, YU Bin, SUN Hui, YANG Xiaodong. Preparation and properties of medical stone/polylactic acid blends for the fabrication of melt-blown nonwoven [J]. Advanced Textile Technology, 2023, 31(3): 128-136. |
[12] | ZHOU Chengliang, SI Yinsong, FU Yaqin. Influence of particle size of hollow silica on thermal conductivity and softness of polyacrylonitrile fiber membranes [J]. Advanced Textile Technology, 2023, 31(3): 137-144. |
[13] | . Preparation of polyvinyl alcohol/sodium alginate drug-loaded composite hydrogel and its antibacterial properties [J]. Advanced Textile Technology, 2023, 31(3): 145-157. |
[14] | YANG Haizhen, WEI Sujie, MA Chuang, ZHOU Zelin, WANG Mengjia, FU Yuan. Research progress of cellulose electrospinning and its derived nanofibers in biomedicine applications [J]. Advanced Textile Technology, 2023, 31(3): 212-224. |
[15] | WANG Nanaa, HUANG Liqiana, XU Jinyunb, ZHOU Cuna, . Research progress of carbon fiber high-temperature resistant sizing agent [J]. Advanced Textile Technology, 2023, 31(3): 237-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||