[1]尹云雷,郭成,杨红英,等.电子织物在智能可穿戴领域的研究进展[J].现代纺织技术,2023,31(1):1-12.
YIN Yunlei, GUO Cheng, YANG Hongying, et al. Research progress of electronic fabrics in the intelligent wearable field[J]. Advanced Textile Technology, 2023, 31(1): 1-12.
[2]汪怡,袁丽,李饶.智能可穿戴设备在糖尿病患者足部监测中的研究进展[J].中国医学装备,2022,19(8):185-188.
WANG Yi, YUAN Li, LI Rao. Application progress of smart wearable device in foot monitoring of diabetic patients[J]. China Medical Equipment, 2022,19(8):185-188.
[3] PENG L H, SU B, YU A B, et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 2019, 26(11): 6415-6448.
[4] 何崟,田福君,王晓云,等.柔性织物传感器技术现状与发展[J].棉纺织技术,2022,50(6):1-7.
HE Yin, TIAN Fujun, WANG Xiaoyun, et al. Technology status and development of flexible fabric sensor[J]. Cotton Textile Technology, 2022, 50(6): 1-7.
[5] DRĂGULINESCU A, DRĂGULINESCU A, ZINCĂ G, et al. Smart socks and In-Shoe systems: State-of-the-art for two popular technologies for foot motion analysis, sports, and medical applications[J]. Sensors, 2020, 20(15): 4316.
[6] 陈足娇,张睿,卓雯雯,等.可穿戴足底压力监测系统研究进展[J].纺织学报,2021,42(9):31-38.
CHEN Zujiao, ZHANG Rui, ZHUO Wenwen, et al. Research progress in wearable plantar pressure monitoring system[J]. Journal of Textile Research, 2021, 42(9): 31-38.
[7] 刘星辰,谢红. 基于CiteSpace的医用防护服研究可视化分析[J].现代纺织技术,2022,30(1):1-8.
LIU Xingchen, XIE Hong. Visual analysis of research on medical protective clothing based on CiteSpace[J]. Advanced Textile Technology, 2022, 30(1): 1-8.
[8] 曹吉强, 王勇, 唐新军, 等. 基于CiteSpace的国内棉纺智能化研究图谱分析[J].现代纺织技术,2022,30(6):1-7.
CAO Jiqiang, WANG Yong, TANG Xinjun, et al. Domestic advance progress of intelligent cotton textile based on CiteSpace graph[J]. Advanced Textile Technology, 2022, 30(6): 1-7.
[9] 张超宇, 肖雨嫣, 任泽华, 等. 基于CiteSpace的近十年国内棉纺织加工研究热点可视化分析[J].现代纺织技术,2022,30(6):8-15, 36.
ZHANG Chaoyu, XIAO Yuyan, REN Zehua, et al. Visual analysis of domestic cotton textile processing research hotspots in recent ten years based on CiteSpace[J]. Advanced Textile Technology, 2022, 30(6): 8-15, 36.
[10] 刘朵, 杨群芳, 王建晶, 等.基于CiteSpace的运动疗法在2型糖尿病护理领域的研究热点分析[J].循证护理,2024,10(3):493-501.
LIU Duo, YANG Qunfang, WANG Jianjing, et al. Research hotspot analysis of exercise therapy in the field of type 2 diabetes care study based on CiteSpace[J]. Chinese Evidence-Based Nursing, 2024,10(3): 493-501.
[11] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J].纺织学报,2021,42(7):169-174.
LIN Wenjun, MIAO Xuhong. Application research progress of optical fiber in luminescent fabrics [J]. Journal of Textile Research, 2021, 42(7): 169-174.
[12] 闵锐, 何润杰, 李小俚. 聚合物光纤光栅制备及应用进展[J].激光与光电子学进展,2021,58(13):290-305.
MIN Rui, HE Runjie, LI Xiaoli. Fabrication and application of polymer optical fiber gratings: A review [J]. Laser & Optoelectronics Progress, 2021, 58(13): 290-305.
[13] PENG G D, XIONG Z, CHU P L. Photosensitivity and gratings in dye-doped polymer optical fibers[J]. Optical Fiber Technology, 1999, 5(2): 242-251.
[14] CHENG X, SERANDI D G, JEFF C P, et al. Single nanosecond-pulse production of polymeric fiber Bragg gratings for biomedical applications[J]. Optics Express, 2020, 28(22): 33573-33583.
[15] WONG C Y, ANG C B, HASEEB A M S A, et al. Review—Conducting polymers as chemiresistive gas sensing materials: A review[J]. Journal of The Electrochemical Society, 2019, 167(3): 1-16.
[16] TSEGHAI B G, MALENGIER B, FANTE A K, et al. Development of a flex and stretchy conductive cotton fabric via flat screen printing of PEDOT:PSS/PDMS conductive polymer composite[J]. Sensors, 2020, 20(6): 1742.
[17] 马香钰, 夏广波, 邱琳琳, 等. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报,2020,34(S1):490-497.
MA Xiangyu, XIA Guangbo, QIU Linlin, et al. Research progress of fibers and fabrics based flexible wearable devices[J]. Materials Reports, 2020, 34(S1): 490-497.
[18] 郭华,宋金亚,张翔,等.织物基底的柔性温度传感器研制与测试[J].传感器与微系统,2022,41(6):86-89, 93.
GUO Hua, SONG Jinya, ZHANG Xiang, et al. Research and test of flexible temperature sensor based on fabric substrate[J]. Transducer and Microsystem Technologies, 2022, 41(6): 86-89, 93.
[19] 曾颖怡,许黛芳,曾悦,等.柔性织物传感器的研究进展[J].山东纺织科技,2022,63(2):53-56.
ZENG Yingyi, XU Daifang, ZENG Yue, et al. Research progress of flexible fabric sensors[J]. Shandong Textile Science & Technology, 2022, 63(2): 53-56.
[20] 孙嘉琪,于晓坤,王克毅.柔性织物传感器研究现状与发展[J].功能材料与器件学报,2020,26(1):16-23.
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional Materials and Devices, 2020, 26(1): 16-23.
[21] JIN S I, LEE W, LIM S, et al. Ultra-flexible, stretchable, highly conductive and multi-functional textiles enabled by brush-painted PEDOT: PSS[J]. Smart Materials and Structures, 2020, 29(9): 095002.
[22] LIAN Y, YU H, WANG M, et al. Ultrasensitive wearable pressure sensors based on silver nanowire-coated fabrics[J]. Nanoscale research letters, 2020, 15(1): 70.
[23] CLEVENGER M, KIM H, SONG H W, et al. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition[J]. Science Advances, 2021, 7(42): eabj8958.
[24] MA H, LI J, ZHOU J, et al. Screen-printed carbon black/recycled Sericin@Fabrics for wearable sensors to monitor sweat loss[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11813-11819.
[25] 陈毓姝,唐虹,NATALIA Jones,等.柔性织物传感器的制备工艺[J].棉纺织技术,2022,50(S1):77-80.
CHEN Yushu, TANG Hong, NATALIA Jones, et al. Preparation process of flexible fabric sensor[J]. Cotton Textile Technology, 2022, 50(S1): 77-80.
[26] LI H, CAO J, CHEN J, et al. Highly sensitive MXene helical yarn/fabric tactile sensors enabling full scale movement detection of human motions[J]. Advanced Electronic Materials, 2022, 8(4): 2100890.
[27] HU J G, DUN G H, GENG X S, et al. Recent progress in flexible micro-pressure sensors for wearable health monitoring[J]. Nanoscale advances, 2023, 5(12): 3131-3145.
[28] TANG C G, WANG Y Q, LI Y N, et al. A review of graphene-based temperature sensors[J]. Microelectronic Engineering, 2023, 278(1): 112015.
[29] HUANG L S, WANG S, ZHANG K, et al. Research progress of multifunctional flexible proximity sensors[J]. Sensors and Actuators: A. Physical, 2023, 360(1): 114500.
[30] 苏树盛.智能可穿戴柔性压力传感器的研究现状与发展趋势[J].纺织科技进展,2023(7):5-10.
SU Shusheng. Research status and development trend of intelligent wearable flexible pressure sensor[J]. Progress in Textile Science & Technology, 2023(7):5-10.
[31] 吕杰,聂智超,张延海,等.基于生物力学数据的足底特征区域划分[J].中国组织工程研究,2020,24(36):5774-5778.
LÜ Jie, NIE Zhichao, ZHANG Yanhai, et al. Plantar feature region division based on
biomechanical data[J]. Chinese Journal of Tissue Engineering Research,2020,24(36):
774-5778.
[32] TIROSH O, BEGG R, PASSMORE E, et al. Wearable textile sensor sock for gait analysis[C]//2013 Seventh International Conference on Sensing Technology (ICST). Wellington, New Zealand: IEEE, 2013: 618-622.
[33] EIZENTALS P, KATASHEV A, OKS A, et al. DAid pressure socks system: Performance evaluation[J]. Gait & Posture, 2021, 84: 368-376.
[34] YEUNG J, CATOLICO D, FULLMER N, et al. Evaluating the sensoria smart socks gait monitoring system for rehabilitation outcomes[J]. PM & R: The journal of injury, function, and rehabilitation, 2019, 11(5): 512-521.
[35] BUCKI M, VUILLERME N, CANNARD F, et al. The TexiSense,《Smart Sock》:A device for a daily prevention of pressure ulcers in the diabetic foot[J]. Annals of Physical and Rehabilitation Medicine, 2011, 54(S1): e159-e159.
[36] PERRIER A, VUILLERME N, LUBOZ V, et al. Smart diabetic socks: Embedded device for diabetic foot prevention[J]. IRBM, 2014, 35(2): 72-76.
[37] LIN X, SEET B C. Battery-free smart sock for abnormal relative plantar pressure monitoring[J]. IEEE transactions on biomedical circuits and systems, 2017, 11(2): 464-473.
[38] LEONG J, PARZER P, Perteneder F, et al. ProCover: Sensory augmentation of prosthetic limbs using smart textile covers[C]// In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. Tokyo, Japan: Association for Computing Machinery, 2016: 335-346.
[39] LUGODA P, COSTA C J, OLIVEIRA C, et al. Flexible temperature sensor integration into E-Textiles using different industrial yarn fabrication processes[J]. Sensors ,2019, 20(1):73.
[40] YANG T, WANG X, YANG Q, et al. Bioinspired temperature-sensitive yarn with highly stretchable capability for healthcare applications[J]. Advanced Materials Technologies,2021, 6(4): 2001075.
[41] WILK P J. Medical stocking for temperature detection: US5546955[P]. 1996-08-20.
[42] MAMDOUH E, SHAIMAA E, FAYROUZ E, et al. Relationship between skin temperature monitoring with smart socks and plantar pressure distribution: A pilot study[J]. Journal of Wound Care, 2018, 27(8): 536-541.
[43] 魏道培.智能袜:糖尿病患者的福音[J].中国纤检,2016(4):136.
WEI Daopei. Smart socks to revolutionize diabetic care[J]. China Fiber Inspection, 2016(4):136.
[44] KENT A, SUGATHAN M. Consumer acceptance of smart textiles: A human-centred approach to the design of temperature-sensing socks[C]//In Proceedings of the 19th Conference International Foundation of Fashion Technology Institutes. Amsterdam, The Netherlands: IFFTI, 2017: 144-155.
[45] REYZELMAN A M, KOELEWYN K, MURPHY M, et al. Continuous temperature-monitoring socks for home use in patients with diabetes: Observational study[J]. Journal of Medical Internet Research, 2018, 20(12): e12460.
[46] LAIMUTE S, SANDRA Ž V, AUSRA A, et al. Development, investigation and evaluation of smart multifunctional socks[J]. Journal of Industrial Textiles, 2022, 51(2): 2330S-2353S.
[47] ZHU M L, SHI Q F, HE T Y Y, et al. Self-Powered and self-functional cotton sockusing piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring[J]. ACS Nano, 2019, 13(2): 1940-1952.
[48] GUIGNIER C,CAMILLIERI B,SCHMID M,et al.E-Knitted textile with polymer optical fibers for friction and pressure monitoring in socks[J]. Sensors, 2019, 19(13):3011.
[49] D′ADDIO G, EVANGELISTA S, DONISI L, et al. Development of a prototype E-textile sock[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 1749-1752.
[50] NAJAFI B, MOHSENI H, GREWAL S G, et al. An Optical-Fiber-Based smart textile (Smart Socks) to manage biomechanical risk factors associated with diabetic foot amputation[J]. Journal of Diabetes Science and Technology, 2017, 11(4): 668–677.
[51] PUIATTI A, MUDDA S, GIORDANO S, et al. Smartphone-centred wearable sensors network for monitoring patients with bipolar disorder[C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, USA: IEEE, 2011: 3644-3647.
[52] ABTAHI M, GYLLINSKYy V J, PAESANG B, et al. MagicSox: An E-textile IoT system to quantify gait abnormalities[J]. Smart Health, 2018, 5-6(5): 4-14.
[53] ZHU M L, SUN Z D, ZHANG Z X, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications[J]. Science Advances, 2020, 6(19):eaaz8693.
[54] ZHANG Z X, HE T Y Y, ZHU M L, et al. Deep learning-enabled triboelectric smartsocks for IoT-based gait analysis and VR applications[J]. npj Flexible Electronics,2020, 4(1): 1-12.
|