Advanced Textile Technology ›› 2024, Vol. 32 ›› Issue (12): 113-122.
Previous Articles Next Articles
Online:
2024-12-10
Published:
2024-12-23
CLC Number:
SHI Zixiang, HU Jiyong. Research progress on the structure, technology and performance of braided tubes[J]. Advanced Textile Technology, 2024, 32(12): 113-122.
时子祥, 胡吉永. 编织管的结构、工艺及性能研究进展[J]. 现代纺织技术, 2024, 32(12): 113-122.
[1]FREEMAN J W, WOODS M D, LAURENCIN C T. Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design[J]. Journal of Biomechanics, 2007, 40(9): 2029-2036. [2]TATE J S, KELKAR A D, WHITCOMB J D. Effect of braid angle on fatigue performance of biaxial braided composites[J]. International Journal of Fatigue, 2006, 28(10): 1239-1247. [3]TANG Z X, POSTLE R. Mechanics of three-dimensional braided structures for composite materials–part I: fabric structure and fibre volume fraction[J]. Composite Structures, 2000, 49(4): 451-459. [4]张万灵. 可降解管道支架的纺织参数对其径向压缩性能的影响[D]. 上海: 东华大学, 2012. ZHANG Wanling. Influence of Braiding Parameters on the Radial Compression Property of Biodegradable Tubular Scaffold[D]. Shanghai: Donghua University, 2012. [5]李倩, 王云云, 李毓陵, 等. 机织人工气管的性能分析[J]. 产业用纺织品, 2011, 29(6): 12-14. LI Qian, WANG Yunyun, LI Yuling, et al. Performance analysis of woven artificial trachea[J]. Technical Textiles, 2011, 29(6): 12-14. [6]张佩华, 王文祖, 陈南梁. 针织医用金属内支架的编织工艺研究[J]. 东华大学学报(自然科学版), 2002, 28(5): 30-33. ZHANG Peihua, WANG Wenzu, CHEN Nanliang. Study on knitting parameters of knitted medical expandable metallic stent[J]. Journal of Donghua University, Natural Science, 2002, 28(5): 30-33. [7]WANG X, HAN C, HU X, et al. Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(7): 922-932. [8]何建龙, 李文龙, 张帆, 等. 纤维素长丝直接成网非织造技术的新进展[J]. 合成纤维, 2022, 51(2): 27-31. HE Jianlong, LI Wenlong, ZHANG Fan, et al. New development of cellulose filament direct-laid nonwoven technology[J]. Synthetic Fiber in China, 2022, 51(2): 27-31. [9]WU Z, SHI L, CHENG X, et al. Transverse impact behavior and residual axial compression characteristics of braided composite tubes: Experimental and numerical study[J]. International Journal of Impact Engineering, 2020, 142: 103578. [10]杨莹,臧金环.三维编织复合材料的力学性能研究进展[J]. 汽车文摘,2023(12):8-13. YANG Ying, ZANG Jinhuan. Advances in mechanical properties of three-dimensional braided composites[J]. Automotive Digest, 2023(12): 8-13. [11]BILISIK K. Multiaxis three-dimensional weaving for composites: A review[J]. Textile Research Journal, 2012, 82(7): 725-743. [12]EMONTS C, GRIGAT N, MERKORD F, et al. Innovation in 3D braiding technology and its applications[J]. Textiles, 2021, 1(2): 185-205. [13]AYRANCI C, CAREY J. 2D braided composites: A review for stiffness critical applications[J]. Composite Structures, 2008, 85(1): 43-58. [14]LOU C W, LU P C, HU J J, et al. Effect of manufacturing parameters and thermal treatment on the properties of tubular braids and tubular knits[J]. Journal of Polymer Engineering, 2016, 36(4): 421-430. [15]ALPYILDIZ T. 3D geometrical modelling of tubular braids[J]. Textile Research Journal, 2012, 82(5): 443-453. [16]SANDERS L R. Braiding: A mechanical means of composite fabrication[J]. Sampe Quarterly, 1977, 8: 38-44. [17]SAINSBURY-CARTER J B. Braided composites. A material form providing low cost fabrication techniques[J]. Proceedings of the National SAMPE Symposium and Exhibition, 1985, 30: 1486-1497. [18]MUNJAL A K, MALONEY P F. Braiding for improving performance and reducing manufacturing costs of composite structures for aerospace applications[J]. Advanced Materials.1990, 35: 1231-1242. [19]于辉, 张健中, 黄兆贺. 二维编织管状织物复合材料研究进展[J]. 纺织导报, 2022 (1): 49-53. YU Hui, ZHANG Jianzhong, HUANG Zhaohe. Research progress of two-dimensional braided tubular fabric composites[J]. China Textile Leader, 2022(1): 49-53. [20]BILISIK K. Three-dimensional braiding for composites: A review[J]. Textile Research Journal, 2013, 83(13): 1414-1436. [21]FUKUNISHI T, ONG C S, LUI C, et al. Formation of neoarteries with optimal remodeling using rapidly degrading textile vascular grafts[J]. Tissue Engineering Part A, 2019, 25(7/8): 632-641. [22]PRAVEEN KUMAR A, NAGESWARA RAO D. Crushing characteristics of double circular composite tube structures subjected to axial impact loading[J]. Materials Today: Proceedings, 2021, 47: 5923-5927. [23]BAR A J, MEAD J, DODIUK H, et al. Stretchable conductive tubular composites based on braided carbon nanotube yarns with an elastomer matrix[J]. ACS Omega, 2022, 7(45): 40766-40774. [24]SONG L, HUANG Q, HUANG Y, et al. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation[J]. Journal of Membrane Science, 2019, 591:117359. [25]TAO P, LIU W, WANG Y. Fabrication of two-layer SiC nanowire cladding tube with high thermal conductivity[J]. Journal of the European Ceramic Society, 2020, 40(9): 3399-3405. [26]REBELO R, VILA N, FANGUEIRO R, et al. Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents[J]. Materials & Design, 2015, 86: 237-247. [27]HELLER L, VOKOUN D, ŠITTNER P, et al. 3D flexible NiTi-braided elastomer composites for smart structure applications[J]. Smart Materials and Structures, 2012, 21(4): 045016. [28]CARPENTER D M. An assessment of silicon carbide as a cladding material for light water reactors [J]. Massachusetts Institute of Technology, 2010, 1:135629045. [29]DING X, ZOU T, GONG X, et al. Trilayered sulfated silk fibroin vascular grafts enhanced with braided silk tube[J]. Journal of Bioactive and Compatible Polymers, 2016, 31(6): 613-623. [30]SOFFER L, WANG X, ZHANG X, et al. Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts[J]. Journal of Biomaterials Science Polymer Edition, 2008, 19(5): 653-664. [31]JIN Y, WU Z, PAN Z, et al. Numerical and experimental study on effect of braiding angle on low-velocity transverse punch response of braided composite tube[J]. International Journal of Damage Mechanics, 2020, 29(4): 667-686. [32]ROSLAN M N, YAHYA M Y, AHMAD Z, et al. Energy absorption behaviour of braided basalt composite tube[J]. Advanced Composite Materials, 2018, 27(5): 467-481. [33]隋纹龙, 陈南梁. 编织型医用管腔内支架的编织工艺研究[J]. 产业用纺织品, 2013, 31(10): 15-18. SUI Wenlong, CHEN Nanliang. Study on braiding parameters of braided medical intraluminal stent[J]. Technical Textiles, 2013, 31(10): 15-18. [34]CHEN Y, GÉLÉBART L, CHATEAU C, et al. Crack initiation and propagation in braided SiC/SiC composite tubes: Effect of braiding angle[J]. Journal of the European Ceramic Society, 2020, 40(13): 4403-4418. [35]LIU Q, LIU M, TIAN Y, et al. Evaluation of resistance to radial cyclic loads of poly(L-lactic acid) braided stents with different braiding angles[J]. International Journal of Biological Macromolecules, 2022, 218: 94-101. [36]WU Z, SHEN Y, PAN Z, et al. Three-point bending behavior and energy absorption capacity of composite tube reinforced by gradient braided structure in radial direction[J]. Fibers and Polymers, 2019, 20(7): 1455-1466. [37]GURLEY A, BEALE D, BROUGHTON R, et al. The design of optimal lattice structures manufactured by maypole braiding[J]. Journal of Mechanical Design, 2015, 137(10): 101401. [38]JIANG Z, CHEN J, SUN B, et al. Electro-induced tensile deformation of over-braiding composite tube with carbon fiber reinforced shape memory polyurethane filament[J]. Smart Materials and Structures, 2022, 31(9): 095015. [39]YANG Q, LIU R, LI Z, et al. Axial and radial reversibility and energy absorption behaviors of braided shape memory composite thin-walled tubes[J]. Thin-Walled Structures, 2024, 196: 111524. [40]LI C, WANG X, ZHAO F, et al. Modeling of braiding parameter impact on pore size and porosity in a tubular braiding fabric[J]. E-Polymers, 2017, 17(3): 221-226. [41]马晓红, 檀江涛, 秦志刚. 碳纤维二维编织管状织物的编织工艺[J]. 纺织学报, 2018, 39(6): 64-69. MA Xiaohong, TAN Jiangtao, QIN Zhigang. Braiding technologies of 2-D braided carbon fiber tubular fabrics[J]. Journal of Textile Research, 2018, 39(6): 64-69. [42]YUKSEKKAYA M E, ADANUR S. Analysis of polymeric braided tubular structures intended for medical applications[J]. Textile Research Journal, 2009, 79(2): 99-109. [43]李志敏, 胡海. 三维编织复合材料圆柱壳的扭转后屈曲分析[J]. 力学季刊, 2008, 29(2): 319-328. LI Zhimin, HU Hai. Postbuckling analysis of three dimensional braided composite cylindrical shells under torsion[J]. Chinese Quarterly of Mechanics, 2008, 29(2): 319-328. [44]王秋野,韩琳,李朋,等. 三维编织复合材料的发展及应用研究[J]. 纤维复合材料, 2022,39(4):145-149. WANG Qiuye, HAN Lin, LI Peng, et al. Study on present situation and application of three-dimensional composite materials[J]. Fiber Composites, 2022, 39(4):145-149. [45]BYUN J H, CHOU T W. Modelling and characterization of textile structural composites: A review[J]. The Journal of Strain Analysis for Engineering Design, 1989, 24(4): 253-262. [46]KOSTAR T D, CHOU T W. Microstructural design of advanced multi-step three-dimensional braided preforms[J]. Journal of Composite Materials, 1994, 28(13): 1180-1201. [47]LI X, HE X, LIANG J, et al. Research status of 3D braiding technology[J]. Applied Composite Materials, 2022, 29(1): 147-157. [48]POTLURI P, MANAN A, FRANCKE M, et al. Flexural and torsional behaviour of biaxial and triaxial braided composite structures[J]. Composite Structures, 2006, 75(1/2/3/4): 377-386. [49]陈波,张昇雨,杨兴林,等.基于细观结构的径向轴纱三维五向圆形编织复合材料的刚度预测[J]. 现代纺织技术,2024, 32(2):83-95. CHEN Bo, ZHANG Shengyu, YANG Xinglin, et al. Stiffness prediction of 3D five-directional circular braided composites with radial yarns based on microstructure[J]. Advanced Textile Technology, 2024, 32(2):83-95. [50]王景景.不同结构三维UHMWPE纤维复合材料的性能研究[J].现代纺织技术,2021, 29(4):12-17. WANG Jingjing. Research on the properties of three-dimensional UHMWPE fiber composites with different structures[J]. Advanced Textile Technology, 2021, 29(4):12-17. [51]WANG X, CAI D, LI C, et al. Failure analysis of three-dimensional braided composite tubes under torsional load: Experimental study[J]. Journal of Reinforced Plastics and Composites, 2017, 36(12): 878-888. [52]XUE Y, XUN L, LI Z, et al. Microstructural modeling of temperature distribution and heat transfer of 3-D carbon fiber braided circular composite tubes under direct current[J]. Aerospace Science and Technology, 2023, 139: 108376. [53]MA W, MA Z, ZHU J. Processing technique and geometric model of an imperfect orthogonal 3D braided material[J]. Journal of Industrial Textiles, 2017, 47(3): 297-309. [54]QI Y, XUE Y, GU B, et al. Dual thermal/electrical-driven compressive recovery behaviors of 3D braided shape memory composite tubes[J]. Composites Science and Technology, 2023, 233: 109912. [55]WU X, ZHANG Q, GU B, et al. Influence of temperature and strain rate on the longitudinal compressive crashworthiness of 3D braided composite tubes and finite element analysis[J]. International Journal of Damage Mechanics, 2017, 26(7): 1003-1027. [56]LI Y, GAN X, GU B, et al. Dynamic responses and damage evolutions of four-step three-dimensional braided composites subjected to high strain rate punch shear loading[J]. Journal of Composite Materials, 2016, 50(12): 1635-1650. [57]GIDEON R K, SUN B, GU B. Mechanical behaviors of four-step 1× 1 braided carbon/epoxy three-dimensional composite tubes under axial compression loading[J]. Polymer Composites, 2016, 37(11): 3210-3218. [58]GIDEON R K, ZHOU H, LI Y, et al. Quasi-static compression and compression–compression fatigue characteristics of 3D braided carbon/epoxy tube[J]. The Journal of the Textile Institute, 2016, 107(7): 938-948. [59]贺辛亥,宁志新,梁军浩,等.编织角对3D-Cf/6061Al复合材料弯曲性能的影响[J].西安工程大学学报,2022,36(3):100-105. HE Xinhai, NING Zhixin, LIANG Junhao, et al. Effect of braiding angle on bending properties of 3D-Cf/6061Al composites[J]. Journal of Xi′an Polytechnic University, 2022, 36(3):100-105. [60]EKŞI S, GENEL K. Three point bending behavior of woven glass, aramid and carbon fiber reinforced hybrid composite tube[J]. Acta Physica Polonica A, 2015, 128(2B):59-62. [61]ZHOU H, HU D, GU B, et al. Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers[J]. Composite Structures, 2017, 168: 345-359. |
[1] | KANG Xiaohu, LI Houming, SONG Kaili, YU Zhicheng, . Analysis on the dyeability of plant dyes to polyester fabrics [J]. Advanced Textile Technology, 2025, 33(01): 44-50. |
[2] | WU Junfang, HAO Peng, PAN Yunqiong, LIU Rong, GU Wei, DAI Jiamu, ZANG Chuanfeng. Effects of Ni-Fe-B alloy deposition on graphitization of carbon fiber felt [J]. Advanced Textile Technology, 2025, 33(01): 93-101. |
[3] | Zhang caiqian, Meng Shaoni, Li Junrong. The influence of air flow on the properties of cotton tight fabrics [J]. Advanced Textile Technology, 2024, 32(7): 74-79. |
[4] | WANG Xuhuia, JIANG Wenbina, WANG Jinfenga, b. Finite element analysis of mechanical properties of weft plain knitted fabrics [J]. Advanced Textile Technology, 2024, 32(6): 80-88. |
[5] | JIN Wenzhe, LÜ Wentao, GUO Qing, XU Yuzhen, YU Runze. Fabric image classification algorithm based on improved 3E-LDA [J]. Advanced Textile Technology, 2024, 32(6): 89-96. |
[6] | ZHOU Zi'ao, GAO Shiya, ZHANG Yongli, LI Yuan. Analysis of global silk trade's network characteristics [J]. Advanced Textile Technology, 2024, 32(5): 73-83. |
[7] | ZHANG Luyang, SONG Haibo, MENG Jing, SHI Tingting, LU Yehu. Dynamic thermal and moisture comfort of the bedding system in different conditions [J]. Advanced Textile Technology, 2024, 32(5): 97-104. |
[8] | LIU Chena, YANG Kailua, CHEN Mingxinga, b, WANG Xinyaa, b, ZHANG Weia, b. Research progress in the preparation and application of melt-blown nonwovens [J]. Advanced Textile Technology, 2024, 32(5): 116-129. |
[9] | JIANG Xina, LIU Chengxiaa, b. A multi-direction visual bending test method of fabrics based on 3D scanning [J]. Advanced Textile Technology, 2024, 32(4): 60-67. |
[10] | WANG Jin, CHENG Hepeng, LI Shuai, LU He, CUI Yongzhi, QIAN Cui'e, YU Hechun. Influence of flow field state in fiber delivery tube on the opening and loosening of fiber tows [J]. Advanced Textile Technology, 2024, 32(3): 29-37. |
[11] | SHI Lang a, JIANG Rongfan b. Effect of coating layer number on dielectric properties and wave absorption properties of Ni powder/graphite matrix composites [J]. Advanced Textile Technology, 2024, 32(3): 38-44. |
[12] | GU Shanqia, b, HU Lianxina, b, WANG Zefenga, b, CHEN Xua, LOU Jiongnana, b, LIU Qiloga, b, ZHANG Gegea, b. Research progress of virtual clothing under the background of metaverse [J]. Advanced Textile Technology, 2024, 32(3): 129-140. |
[13] | CHEN Bo, ZHANG Shengyu, YANG Xinglin, ZHANG Junmiao. Stiffness prediction of 3D five-directional circular braided composites with radial yarns based on microstructure [J]. Advanced Textile Technology, 2024, 32(2): 83-95. |
[14] | YU Jianweia, b, HOU Zhanchang, CHEN Chao, YU Zhichenga, b. The rubbing fastness of cashmere fibers dyed with madder vegetable dyes [J]. Advanced Textile Technology, 2024, 32(2): 105-111. |
[15] | PENG Zhouyan, MA Ling, SU Huimin, PAN Yiting, ZOU Fengyuan. A size measurement method for suit collar design based on a SAM model [J]. Advanced Textile Technology, 2024, 32(12): 83-89. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||