[1] WIATROS-MOTYKA M, FULGHUM N, JONES D. Global Electricity Review 2024[J]. United Kingdom: Ember. 2024:8.
[2] KACZMARCZYK J, MELIKOV A, FANGER P O. Human response to personalized ventilation and mixing ventilation[J]. Indoor Air, 2004, 14(Suppl 8): 17-29.
[3] WEBB P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions[J]. European Journal of Applied Physiology and Occupational Physiology, 1992, 64(5): 471-476.
[4] 郭晨玥, 潘浩丹, 徐琪皓, 等. 天空辐射制冷技术发展现状与展望[J]. 制冷学报, 2022, 43(3): 1-14.
GUO Chenyue, PAN Haodan, XU Qihao, et al. Current status and future perspectives of radiative sky cooling[J]. Journal of Refrigeration, 2022, 43(3): 1-14.
[5] WANG T, ZHANG Y, CHEN M, et al. Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating[J]. Cell Reports Physical Science, 2022, 3(3): 100782.
[6] 杜晨秋. 环境温度变化对人体热调节和健康影响及其分子机理研究[D]. 重庆:重庆大学, 2018.
DU Chenqiu. Effect of Temperature Variation on Human Thermal Regulation and Health and its Molecular Mechanism[D]. Chongqing: Chongqing University, 2018.
[7] HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(12): 624-631.
[8] GAO S, OOKA R, OH W. Experimental assessment of convective and radiative heat transfer coefficients for various clothing ensembles[J]. International Journal of Biometeorology, 2021, 65(11): 1811-1822.
[9] TONG J K, HUANG X, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2015, 2(6): 769-778.
[10] ZHAO D, AILI A, ZHAI Y, et al. Radiative sky cooling: Fundamental principles, materials, and applications[J]. Applied Physics Reviews, 2019, 6(2): 021306.
[11] 汤丰丞, 张伟, 戴家木, 等. 辐射制冷纺织材料的研究进展[J]. 棉纺织技术, 2023, 51(2): 76-80.
TANG Fengcheng, ZHANG Wei, DAI Jiamu, et al. Research progress of radiation cooling textile material[J]. Cotton Textile Technology, 2023, 51(2): 76-80.
[12] 韩梦瑶,任松,葛灿,等.用于个人热管理的被动调温服装材料研究进展[J].现代纺织技术,2023,31(1):92-103.
HAN Mengyao, REN Song, GE Can, et al. Research progress of passive temperature-regulated clothing materials for personal thermal management [J]. Advanced Textile Technology, 2023, 31(1): 92-103.
[13] BACHMANN M A, KOENIG J L. Vibrational analysis of phase III of poly (vinylidene fluoride)[J]. The Journal of Chemical Physics, 1981, 74(10): 5896-5910.
[14] CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30(35): e1802152.
[15] WONG A, DAOUD W A, LIANG H H, et al. Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric[J]. Solar Energy Materials and Solar Cells, 2015, 134: 425-437.
[16] MEHRIZI M K, MORTAZAVI S M, MALLAKPOUR S, et al. The effect of nano-and micro-TiO2 particles on reflective behavior of printed cotton/nylon fabrics in vis/NIR regions[J]. Color Research and Application, 2012, 37(3): 199-205.
[17] WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells, 2020, 211: 110525.
[18] 刘倩倩,靳贵铭,颜苏芊,等.纺织厂空压机预处理吸气参数对其能耗的影响[J].现代纺织技术,2022,30(1):122-128.
LIU Qianqian, JIN Guiming, YAN Suqian, et al. Impact of the suction parameters of textile air compressor pretreatment on its energy consumption[J]. Advanced Textile Technology, 2022, 30(1): 122-128.
[19]褚俊杰,耿志超,严政.数据中心间接蒸发冷却空调系统能效评价[J].西安工程大学学报,2023,37(5):46-52.
CHU Junjie, GENG Zhichao, YAN Zheng. Energy efficiency evaluation of indirect evaporative cooling air conditioning system in data centers[J]. Journal of Xi'an Polytechnic University, 2023, 37(5): 46-52.
[20] JEONG S Y, TSO C Y, HA J, et al. Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate[J]. Renewable Energy, 2020, 146: 44-55.
[21] MOHAMMED R H, AHMADI M, MA H, et al. Desiccants enabling energy-efficient buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113418.
[22] LI X, MIN X, LI J, et al. Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018, 2(11): 2477-2484.
[23]AO X, HU M, ZHAO B, et al. Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2019, 191: 290-296.
[24] FAN J, FU C, FU T. Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment[J]. Applied Thermal Engineering, 2020, 165: 114585.
[25] WU X, LI J, XIE F, et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance[J]. Nature Communications, 2024, 15(1): 815.
[26] KIM H, LENERT A. Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling[J]. Journal of Optics, 2018, 20(8): 084002.
[27] TORGERSON E, HELLHAKE J. Polymer solar filter for enabling direct daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110319.
[28] GAO M, HAN X, CHEN F, et al. Approach to fabricating high-performance cooler with near-ideal emissive spectrum for above-ambient air temperature radiative cooling[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110013.
[29] ZHAI Y, MA Y, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.
[30] CHEN Y, DANG B, FU J, et al. Cellulose-based hybrid structural material for radiative cooling[J]. Nano Letters, 2021, 21(1): 397-404.
[31] AHMED S, LI S, LI Z, et al. Enhanced radiative cooling of solar cells by integration with heat pipe[J]. Applied Energy, 2022, 308: 118363.
[32] ZHAO D, AILI A, ZHAI Y, et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling[J]. Joule, 2019, 3(1): 111-123.
[33] ZHAO D, AILI A, YIN X, et al. Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving[J]. Energy and Buildings, 2019, 203: 109453.
[34] 陈华, 鄢全科, 刘鹏, 等. 辐射制冷金属屋面系统施工技术研究[J].建筑结构, 2021, 51(23): 38-41,27.
CHEN Hua, YAN Quanke, LIU Peng, et al. Research on construction technology of radi-cool metal roof system[J]. Building Structure, 2021, 51(23): 38-41,27.
[35] HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
[36] 李敏,张明盼,顾婧,等.聚偏氟乙烯/SiO2纳米纤维膜的制备及辐射降温性能研究[J].轻纺工业与技术,2022,51(6):24-26.
LI Min, ZHANG Mingpan, GU Jing, et al. Preparation and radiation cooling performance of polyvinylidene fluoride /SiO2 nanofiber membrane[J]. Light and Textile Industry and Technology, 2022,51(6):24-26.
[37] SONG Y N, LEI M Q, DENG L F, et al. Hybrid metamaterial textiles for passive personal cooling indoors and outdoors[J]. ACS Applied Polymer Materials, 2020, 2(11): 4379-4386.
[38] HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 2017, 3(11): e1700895.
[39] 杨春利, 商胜龙, 刘云. PTFE-PVDF/SiO2导电织物制冷/保暖双功能纺织品的制备及性能研究[J].化工新型材料, 2023,51(8):128-133.
YANG Chunli, SHANG Shenglong, LIU Yun. Study on preparation and performance of PTFE-PVDF/SiO2 conductive fabric cooling/heating dual-functional textile[J]. New Chemical Materials, 2023,51(8):128-133.
[40] GU B, FAN F, XU Q, et al. A nano-structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high-temperature environments[J]. Chemical Engineering Journal, 2023, 461: 141919.
[41] ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
[42] PENG Y, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 2018, 1: 105-112.
[43] CAI L L, PENG Y C, XU J W, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 2019, 3(6): 1478-1486.
[44] SHI N N, TSAI C C, CARTER M J, et al. Nanostructured fibers as a versatile photonic platform: radiative cooling and waveguiding through transverse Anderson localization[J]. Light: Science & Applications, 2018, 7: 37.
[45] SONG Y N, LEI M Q, LEI J, et al. A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling[J]. Advanced Materials Technologies, 2020, 5(7): 2000287.
[46] SONG Y N, LEI M Q, LEI J, et al. Spectrally selective polyvinylidene fluoride textile for passive human body cooling[J]. Materials Today Energy, 2020, 18: 100504.
[47] CHENG N, MIAO D, WANG C, et al. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation[J]. Chemical Engineering Journal, 2023, 460: 141581.
[48] WU X, LI J, JIANG Q, et al. An all-weather radiative human body cooling textile[J]. Nature Sustainability, 2023, 6: 1446-1454.
[49] ZHANG X, YANG W, SHAO Z, et al. A moisture-wicking passive radiative cooling hierarchical metafabric[J]. ACS Nano, 2022, 16(2): 2188-2197.
[50] CHEN J, WANG Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule, 2017, 1(3): 480-521.
[51] LIN C, LI Y, CHI C, et al. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates[J]. Advanced Materials, 2022, 34(12): e2109350.
[52] LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158.
[53] LIN K T, NIAN X, LI K, et al. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling[J]. eLight, 2023, 3(1): 22.
[54] KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nanoPE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment, 2018, 145: 85-95.
|