Advanced Textile Technology ›› 2024, Vol. 32 ›› Issue (12): 134-144.
Online:
2024-12-10
Published:
2024-12-23
CLC Number:
LÜ Furong, SHI Yunlong, JING Xiaoning, ZENG Qianyi, ZHU Xuewei, LEI Haiyang. Research progress on key technologies of clothing recommendation systems[J]. Advanced Textile Technology, 2024, 32(12): 134-144.
吕福荣, 师云龙, 景晓宁, 曾倩怡, 祝学薇, 雷海洋. 服装推荐系统的关键技术研究进展[J]. 现代纺织技术, 2024, 32(12): 134-144.
[1] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3): 56–58. [2] 王静,王小艺,兰翠芹,等. 服装个性化定制中信息技术的应用与展望[J]. 丝绸, 2024, 61(1): 96-108. WANG Jing, WANG Xiaoyi, LAN Cuiqin, et al. Application and prospect of information technology in personalized clothing customization[J]. Journal of Silk, 2024, 61(1): 96-108. [3] 潘王蕾,何瑛. 基于个性化推荐的服装知识图谱构建[J]. 服装学报, 2022, 7 (3): 275-282. PAN Wanglei, HE Ying. Construction of clothing knowledge graph based on personalized recommendation[J]. Journal of Clothing Research, 2022, 7(3): 275-282. [4] DING Y, LAI Z, MOK P Y, et al. Computational technologies for fashion recommendation: A survey[J]. ACM Computing Surveys, 2023, 56(5): 1-45. [5] 张琦妍, 支阿玲, 罗戎蕾. 服装风格图像的识别分类研究进展[J]. 染整技术, 2023, 45(9): 1-8. ZHANG Qiyan, ZHI Aling, LUO Ronglei. Research progress in recognition and classification of clothing style images [J]. Textile Dyeing and Finishing Journal, 2023, 45(9): 1-8. [6] CHEN H, GALLAGHER A, GIROD B. Describing Clothing by Semantic Attributes[M]. Computer Vision -ECCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 609-623 [7] YANG M, YU K. Real-time clothing recognition in surveillance videos[C]//2011 18th IEEE International Conference on Image Processing, ICIP 2011, Brussels, Belgium, IEEE, 2011:214. [8] SURAKARIN W, CHONGSTITVATANA P. Classification of clothing with weighted SURF and local binary patterns[C]//2015 International Computer Science and Engineering Conference(ICSEC). Chiang Mai, Thailand. IEEE, 2015:21. [9] LEE C H, LIN C W. A two-phase fashion apparel detection method based on YOLOv4[J]. Applied Sciences, 2021, 11(9): 3782. [10] 唐运军, 孙舒畅. 机器学习中的特征工程方法[J]. 汽车实用技术, 2020(12): 70-72. TANG Yunjun, SUN Shuchang. Feature engineering methods in machine learning[J]. Automobile Applied Technology, 2020(12): 70-72. [11] 张艳红, 杨思, 徐增波. 数字图像处理技术在服装领域的应用[J]. 毛纺科技, 2019, 47(10): 83-88. ZHANG Yanhong, YANG Si, XU Zengbo. Application of digital image processing technology in clothing[J]. Wool Textile Journal,2019,47(10):83-88. [12] SEYEDNEZHAD S M M, COZART K N, BOWLLAN J A, et al. A review on recommendation systems: Context-aware to social-based[EB/OL]. 2018:1811.11866. DOI:10.48550/arXiv.1811.11866. [13] ALZU'BI A, YOUNIS L B, MADAIN A. An interactive attribute-preserving fashion recommendation with 3D image-based virtual try-on[J]. International Journal of Multimedia Information Retrieval, 2023, 12(2): 24. [14] LIU F, CHENG Z, ZHU L, et al. Interest-aware message-passing GCN for recommendation[C]//Proceedings of the Web Conference 2021. Ljubljana, Slovenia. ACM, 2021: 1296-1305. [15] SHEN X, LI X, ZHOU B, et al. Dynamic knowledge modeling and fusion method for custom apparel production process based on knowledge graph[J]. Advanced Engineering informatics, 2023, 55: 101880. [16] ZHANG Q, LU J, JIN Y. Artificial intelligence in recommender systems[J]. Complex & Intelligent Systems, 2021, 7(1): 439-457. [17] 杨怡然, 吴巧英. 智能化服装搭配推荐研究进展[J]. 浙江理工大学学报(自然科学版), 2021, 45(1): 1-12. YANG Yiran, WU Qiaoying. Research progress of intelligent clothing matching recommendation[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2021, 45(1): 1-12. [18] YERUVA S, SATHVIKA A, SRUTHI D, et al. Apparel recommendation system using content-based filtering[J]. International Journal of Recent Technology and Engineering (IJRTE), 2022, 11(4): 46-51. [19] SU X, GAO M, REN J, et al. Personalized clothing recommendation based on user emotional analysis[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 7954393. [20] DANG C N, MORENO-GARCÍA M N, DE LA PRIETA F. An approach to integrating sentiment analysis into recommender systems[J]. Sensors, 2021, 21(16): 5666. [21] 丁嘉鸣. 基于在线评论的商品推荐方法[J]. 计算机时代, 2023(8): 137-140. DING Jiaming. Online review-based approach to product recommendation[J]. Computer Era, 2023(8): 137-140. [22] ZHOU X, LIANG H E, DONG Z. A personalized recommendation model for online apparel shopping based on Kansei engineering[J]. International Journal of Clothing Science and Technology, 2017, 29(1): 2-13. [23] DASH B B, DE U C, BEHERA T M, et al. Recommendation system for e-commerce apparel stores based on text-semantics[C]//2023 2nd International Conference for Innovation in Technology (INOCON). Bangalore, India. IEEE, 2023: 1-5. [24] 王淼, 李大为. 基于内容与协同过滤的混合推荐算法在数字科技馆中的应用[J]. 网络安全技术与应用, 2023(8): 37-39. WANG Miao, LI Dawei. Application of hybrid recommendation algorithm based on content and collaborative filtering in digital science museum [J]. Network Security Technology & Application, 2023(8): 37-39. [25] 许海玲, 吴潇, 李晓东, 等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2): 350-362. XU Hailing, WU Xiao, LI Xiaodong, et al. Comparison study of internet recommendation system[J]. Journal of Software, 2009, 20(2): 350-362. [26] 马宏伟, 张光卫, 李鹏. 协同过滤推荐算法综述[J]. 小型微型计算机系统, 2009, 30(7): 1282-1288. MA Hongwei, ZHANG Guangwei, LI Peng. Survey of collaborative filtering algorithms[J]. Journal of Chinese Computer Systems, 2009, 30(7): 1282-1288. [27] LIU Y, NIE J, XU L, et al. Clothing Recommendation System Based on Advanced User-Based Collaborative Filtering Algorithm[M]. Lecture Notes in Electrical Engineering. Singapore: Springer Singapore, 2017: 436-443. [28] 赵子花, 任若彤, 刘爽等. 融合气象数据的协同过滤推荐服装智慧穿搭APP设计[J]. 廊坊师范学院学报(自然科学版), 2020, 20(3): 16-20. ZHAO Zihua, REN Ruotong, LIU Shuang, et al. Design of collaborative filtering recommendation of the intelligent dressing APP based on meteorological Data[J]. Journal of Langfang Normal University(Natural Science Edition), 2020, 20(3): 16-20. [29] CHENG Z, LIU F, MEI S, et al. Feature-level attentive ICF for recommendation[EB/OL]. 2021: 2102.10745.http://arxiv.org/abs/2102.10745v2. [30] HWANGBO H, KIM Y S, CHA K J. Recommendation system development for fashion retail e-commerce[J]. Electronic Commerce Research and Applications, 2018, 28: 94-101. [31] LING X, JIN Z, HONG Y, et al. Development of novel fashion design knowledge base by integrating conflict rule processing mechanism and its application in personalized fashion recommendations. [J] Textile Research Journal. 2023;93(5-6): 1069-1089. [32] HONG Y, ZENG X, BRUNIAUX P, et al. Development of a new knowledge-based fabric recommendation system by integrating the collaborative design process and multi-criteria decision support[J]. Textile Research Journal, 2018, 88(23): 2682-2698. [33] DONG M, ZENG X, KOEHL L, et al. An interactive knowledge-based recommender system for fashion product design in the big data environment[J]. Information Sciences, 2020, 540: 469-488. [34] ZHANG J, ZENG X, DONG M, et al. Garment recommendation in an e-shopping environment by using a Markov Chain and Complex Network integrated method[J]. Textile Research Journal, 2021, 91(23/24): 2950-2961. [35] LING X, HONG Y, PAN Z. Development of a dress design knowledge base (DDKB) based on sensory evaluation and fuzzy logic[J]. International Journal of Clothing Science and Technology, 2020, 33(1): 137-149.. [36] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804. YU Kai, JIA Lei, CHEN Yuqiang, et al. Deep learning: Yesterday, today and tomorrow [J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804. [37] HAN Y, NANDA G, MOGHADDAM M. Attribute-sentiment-guided summarization of user opinions from online reviews[J]. Journal of Mechanical Design, 2023, 145(4): 041402. [38] LEE G H, KIM S, PARK C K. Development of fashion recommendation system using collaborative deep learning[J]. International Journal of Clothing Science and Technology, 2022. [39] NAHAM A Z, WANG J, RAEED A S. Multi-task learning and gender-aware fashion recommendation system using deep learning[J]. Electronics, 2023, 12(16): 3396. [40] 郑雨婷,王成群,陈亮亮,等.基于卷积神经网络的织物图像识别方法研究进展[J].现代纺织技术,2022,30(5):1-11. ZHENG Yuting, WANG Chengqun, CHEN Liangliang, et al. Research progress of fabric image processing methods based on convolutional neural network[J]. Advanced Textile Technology, 2022, 30(5): 1-11. [41] KHALID M, MAO K, HUSSAIN T. Design and implementation of clothing fashion style recommendation system using deep learning[J]. Romanian Journal of Information Technology & Automatic Control, 2023, 31(4):20. [42] 周晓彦, 王珂, 李凌燕. 基于深度学习的目标检测算法综述[J]. 电子测量技术, 2017, 40(11): 89-93. ZHOU Xiaoyan, WANG Ke, LI Lingyan. Review of object detection based on deep learning[J]. Electronic Measurement Technology, 2017, 40(11): 89-93. [43] LIU Z, LUO P, QIU S, et al. Deep fashion: Powering robust clothes recognition and retrieval with rich annotations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 1096-1104. [44] MORELLI D, CORNIA M, CUCCHIARA R. Fashion search++: Improving consumer-to-shop clothes retrieval with hard negatives[C]//Italian Information Retrieval Workshop. Bari, Italy. 2021, 2947. [45] KUMAR SHARMA A, BAJPAI B, ADHVARYU R,, et al. An efficient approach of product recommendation system using NLP technique[J]. Materials Today: Proceedings, 2023, 80: 3730-3743. [46] 徐开心,戴宁,汝欣,等.基于LSTM循环神经网络的织机了机预测[J]. 现代纺织技术,2023,31(3):70-80. XU Kaixin, DAI Ning, RU Xin, et al. Prediction of loomwarp-out time based on LSTM recurrent neural network[J]. Advanced Textile Technology, 2023, 31(3): 70-80. [47] JIANG Y, XU Q, CAO X, et al. Who to ask: An intelligent fashion consultant[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. Yokohama Japan. ACM, 2018: 525-528. [48] 施倩,罗戎蕾.基于生成对抗网络的服装图像生成研究进展[J].现代纺织技术,2023,31(2):36-46. SHI Qian, LUO Ronglei. Research progress of clothing image generation based on Generative Adversarial Networks[J]. Advanced Textile Technology, 2023, 31(2): 36-46. [49] CUI Y R, LIU Q, GAO C Y, et al. Fashion GAN: display your fashion design using conditional generative adversarial nets[C]//Computer Graphics Forum. 2018, 37(7): 109-119. [50] 汪晨, 曾凡玉, 郭九霞. 记忆增强型深度强化学习研究综述[J]. 小型微型计算机系统, 2021, 42(3): 454-461. WANG Chen, ZENG Fanyu, GUO Jiuxia. Survey on memory-augmented deep reinforcement learning[J]. Journal of Chinese Computer Systems, 2021, 42(3): 454-461. [51] DE DIVITIIS L, BECATTINI F, BAECCHI C, et al. Disentangling features for fashion recommendation[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19(1s): 39. [52] 郭续, 买日旦·吾守尔, 古兰拜尔·吐尔洪. 基于多模态融合的情感分析算法研究综述[J]. 计算机工程与应用, 2024, 60(2): 1-18. GUO Xu, MAIRIDAN Wushouer, GULANBAIER Tuerhong. Survey of Sentiment Analysis Algorithms Based on Multimodal Fusion [J]. Computer Engineering and Applications, 2024, 60(2): 1-18. [53] 刘军平, 张伏红, 胡新荣,等. 基于多模态融合的个性化服装搭配推荐[J]. 纺织学报, 2023, 44(3): 176-186. LIU Junping, ZHANG Fuhong, HU Xinrong, et al. Personalized clothing matching recommendation based on multi-modal fusion[J]. Journal of Textile Research, 2023, 44(3): 176-186. [54] YANG X, HE X, WANG X, et al. Interpretable fashion matching with rich attributes[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France. ACM, 2019: 775-784. [55] SARKAR R, BODLA N, VASILEVA M, et al. Outfit Transformer: Outfit representations for fashion recommendation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA. IEEE, 2022: 2263-2267 [56] 林瑞冰,贾静,徐平华,等.融合视觉感知机制的品牌女装设色解析[J].服装学报,2023,8(6):546-553. LIN Ruibing, JIA Jing, XU Pinghua, et al. Color parsing of female brand costume based on visual perception mechanism[J]. Journal of Clothing Research, 2023, 8(6): 546-553. [57]李圆,王孝东,于淼.以穿衣搭配数据为基础的协同过滤算法改进[J].纺织高校基础科学学报,2023,36(2):93-100. LI Yuan, WANG Xiaodong, YU Miao. Improvement of collaborative filtering algorithm based on clothing matching data[J]. Basic Sciences Journal of Textile Universities, 2023, 36(2): 93-100. [58] 陈柯. 基于多属性融合的服装搭配推荐[D]. 杭州: 浙江大学, 2018. CHEN Ke. Clothing Collocation Recommendation Based on Multi-Attribute Fusion[D]. Hangzhou: Zhejiang University, 2018. [59] 马佳敏,吴晶,周旭东,等.新零售业态下皮具品牌营销策略分析[J].皮革科学与工程,2022,32(5):89-94. MA Jiamin, WU Jing, ZHOU Xudong, et al. Analysis of leather brand marketing strategy under the new retail format[J]. Leather Science and Engineering, 2022, 32(5): 89-94. |
[1] | YOU Xiaoronga, LI Shufangb, SHAO Hongyana, . A clothing image attribute prediction method integrating attention mechanism and improved ResNet50 [J]. Advanced Textile Technology, 2025, 33(01): 58-64. |
[2] | ZHOU Xingya, SUN Hongrui, SONG Rong, XIAKEER Saitaer. Fabric fault detecting algorithm based on a parallel stacking model [J]. Advanced Textile Technology, 2024, 32(9): 99-107. |
[3] | LI Linhonga, b, YANG Jiea, b, JIANG Yanxuana, b, ZHU Haoa. Clothing image classification algorithm based on improved MobileNet v2#br# [J]. Advanced Textile Technology, 2024, 32(4): 93-103. |
[4] | RAN Erfei, JIA Xiaojun, WANG Zixiang, XIE Hao, XU Congyuan. Automatic generation of blue calico's single pattern based on Stable Diffusion [J]. Advanced Textile Technology, 2024, 32(12): 48-59. |
[5] | CAO Hanying, TUO Jiying. A Method for Identifying Women's Sleeves Based on Improved YOLOv5 and ResNet50 [J]. Advanced Textile Technology, 2024, 32(1): 45-53. |
[6] | GAO Min, ZOU Yanglin, CAO Xinwang. Fabric defect detection based on improved YOLOv5 model [J]. Advanced Textile Technology, 2023, 31(4): 155-163. |
[7] | ZENG Huafu, YANG Jie, LI Linhong. Clothing image classification algorithm based on improved ShuffleNet v1 [J]. Advanced Textile Technology, 2023, 31(2): 23-. |
[8] | SHI Qian, LUO Ronglei. Research progress of clothing image generation based on Generative Adversarial Networks [J]. Advanced Textile Technology, 2023, 31(2): 36-. |
[9] | RUAN Mengyu, LI Min, HE Ruhan, YAO Xun. Fabric defect detection based on improved RefineDet [J]. Advanced Textile Technology, 2022, 30(5): 12-20. |
[10] | CONG Mingfang, LI Ziyin, LU Yang, HAN Gaofeng, XIE Lingjia, WANG Qizhen. Recognition technology of cashmere and wool fibers based on mask R-CNN deep learning [J]. Advanced Textile Technology, 2022, 30(2): 36-40. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||