[1] Shan H, Pan Q W, Xiang C J, et al. High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane[J]. Cell Reports Physical Science, 2021, 2(12):100664.
[2] Cao C, Ge M, Huang J, et al. Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation[J]. Journal of Materials Chemistry A, 2016, 4(31):12179-12187.
[3] Li W L, Wang H P, Li Z X. Preparation of golf ball-shaped microspheres with fluorinated polycaprolactone via single-solvent electrospraying for superhydrophobic coatings[J]. Progress in Organic Coatings, 2019, 131:276-284.
[4] Xiang F, Zong Y K, Chen M Q, et al. Preparation of super-hydrophobic cotton fabrics with the controllable roughening fiber surface by carbene polymerization grafting[J]. Progress in Organic Coatings, 2022, 163:106635.
[5] Cheng Y, Zhu T X, Li S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355:290-298.
[6] Li W, Wang H, Li Z. Hierarchical structure microspheres of PCL block copolymers via electrospraying as coatings for fabric with mechanical durability and self-cleaning ability[J]. Polymers for Advanced Technologies, 2019, 30(9):2321-2330.
[7] Li W L, Wang X T, Wu Y, et al. One-step spontaneous grafting via diazonium chemistry for the fabrication of robust bionic multifunctional superhydrophobic fabric[J]. Surface and Coatings Technology, 2021, 407:126802.
[8] Troyano J, Carné-Sánchez A, Avci C, et al. Colloidal metal-organic framework particles: The pioneering case of ZIF-8[J]. Chemical Society Reviews, 2019, 48(23):5534-5546.
[9] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943.
[10] Perez E, Karunaweera C, Musselman I,et al. Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations[J]. Processes, 2016, 4(3):32.
[11] Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2):1105-1125.
[12] Tan Y X, He Y P, Zhang J A. Tuning MOF stability and porosity via adding rigid pillars[J]. Inorganic Chemistry, 2012, 51(18):9649-9654.
[13] Wang S B, Wang X C. Multifunctional metal-organic frameworks for photocatalysis[J]. Small, 2015, 11(26):3097-3112.
[14] Zhang L Y, Chen H, Bai X J, et al. Fabrication of 2D metal-organic framework nanosheet@fiber composites by spray technique[J]. Chemical Communications, 2019, 55(57):8293-8296.
[15] Liu D D, Liu X M, Fang K J, et al. Synergistic effect of MOFs and PMHS on robust cotton fabric for promoted hydrophobic and UV-resistance[J]. Chemical Engineering Journal, 2023,457:141319.
[16] Abdelhameed R M, Abdel-Gawad H, Elshahat M, et al. Cu-BTC@cotton composite: Design and removal of ethion insecticide from water[J]. RSC Advances, 2016, 6(48):42324-42333.
[17] Chen Z J, Ma K K, Mahle J J, et al. Integration of metal–organic frameworks on protective layers for destruction of nerve agents under relevant conditions[J]. Journal of The American Chemical Society, 2019, 141(51):20016-20021.
[18] 李万新. 纺织品表面辐射接枝金属有机框架化合物的研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015: 17-20
LI Wanxin. Research on Radiation Grafting of Metal-organic Framework Compounds on Textile Surfaces[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2015: 17-20
[19] 张清华, 甘锋, 李琇廷, 等. 一种聚酰亚胺织物表面辐射接枝金属有机框架的方法, CN201711067706.X[P]. 2020-08-04.
Zhang Qinghua, Gan Feng, Li Xiuyan, et al. A method of radiation grafting metal organic framework on the surface of polyimide fabric, CN201711067706.X[P]. 2020-08-04.
[20] Li D k, Guo Z g. Metal-organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance[J]. Applied Surface Science, 2018, 443:548-557.
[21] Zhang K, Huo Q a, Zhou Y Y, et al. Textiles/metal–organic frameworks composites as flexible air filters for efficient particulate matter removal[J]. ACS Applied Materials & Interfaces, 2019, 11(19):17368-17374.
[22] Nie X l, Wu S l, Mensah A, et al. Insight into light-driven antibacterial cotton fabrics decorated by in situ growth strategy[J]. Journal of Colloid and Interface Science, 2020, 579:233-242.
[23] Emam H E, Abdelhameed R M. In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide)[J]. Journal of Porous Materials, 2017, 24(5):1175-1185.
[24] Lu L, Hu C, Zhu Y j, et al. Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal-organic framework[J]. Cellulose, 2018, 25(7):4223-4238.
[25] Li W l, Zhang Y x, Yu Z, et al. In situ growth of a stable metal–organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications[J]. ACS Nano, 2022, 16(9):14779-14791.
[26] Zhang Z b, Zhao J w, Lei Y q, et al. Preparation of intricate nanostructures on 304 stainless steel surface by SiO2-assisted HF etching for high superhydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586:124287.
[27] Liu Y y, Tang J, Wang R h, et al. Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles[J]. Journal of Materials Chemistry, 2007, 17(11):1071-1078.
[28] YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of The Royal Society of London, 1805,95: 65-87.
[29] Zhang Y f, Zhang L q, Xiao Z, et al. Fabrication of robust and repairable superhydrophobic coatings by an immersion method[J]. Chemical Engineering Journal, 2019, 369:1-7.
[30] Wang J r, Wang X f, Zhao S, et al. Robust superhydrophobic mesh coated by PANI/TiO2 nanoclusters for oil/water separation with high flux, self-cleaning, photodegradation and anti-corrosion[J]. Separation and Purification Technology, 2020, 235:116166.
[31] Yang Y y, Guo Z p, Huang W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric[J]. Applied Surface Science, 2020, 503:144079.
[32] Yang Y y, Huang W, Guo Z p, et al. Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil-water separation[J]. Cellulose, 2019, 26(17):9335-9348.
[33] Zhao Y m, Liu E z, Fan J, et al. Superhydrophobic PDMS/wax coated polyester textiles with self-healing ability via inlaying method[J]. Progress in Organic Coatings, 2019, 132:100-107.
[34] Chen S s, Li X a, Li Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4):4070-4076.
[35] Li R, Chen T t, Pan X l. Metal-organic-framework-based materials for antimicrobial applications[J]. ACS Nano, 2021, 15(3): 3808-3848.
[36] Liang S, Wu X L, Xiong J, et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review[J]. Coordination Chemistry Reviews, 2020, 406: 213149.
[37] Rezaee R, Montazer M, Mianehro A, et al. Single-step synthesis and characterization of Zr-MOF onto wool fabric: Preparation of antibacterial wound dressing with high absorption capacity[J]. Fibers and Polymers, 2022, 23(2):404-412.
[38] Teo W L, Liu J, Zhou W, et al. Facile preparation of antibacterial MOF‐fabric systems for functional protective wearables[J]. SmartMat, 2021, 2(4):567-578.
[39] Ma K k, Cheung Y H, Xie H m, et al. Zirconium-based Metal-organic frameworks as reusable antibacterial peroxide carriers for protective textiles[J]. Chemistry of Materials, 2023, 35(6):2342-2352.
[40] 范雪荣. 纺织品染整工艺学[M]. 2版.北京: 中国纺织出版社, 2006:356.
Fan Xuerong. Textile Dyeing and Finishing Technology[M]. Version 2. Beijing: China Textile & Apparel Press, 2006:356.
[41] Zhang K, Yang Z, Mao X e, et al. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction[J]. ACS Applied Materials & Interfaces, 2020, 12(49):55316-55323.
[42] Jhinjer H S, Singh A, Bhattacharya S, et al. Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air[J]. Journal of Hazardous Materials, 2021, 411:125056.
[43] Zhang X l, Sun Y x, Liu Y f, et al. UiO-66-NH2 fabrics: Role of trifluoroacetic acid as a modulator on MOF uniform coating on electrospun nanofibers and efficient decontamination of chemical warfare agent simulants[J]. ACS Applied Materials & Interfaces, 2021, 13(33):39976-39984.
[44] Ma K k, Islamoglu T, Chen Z j, et al. Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber[J]. Journal of the American Chemical Society, 2019, 141(39):15626-15633.
[45] Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31):16025-16058.
[46] Shi M b, Huang R l, Qi W, et al. Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602:125102.
[47] Zhang G h, Liu Y, Chen C, et al. MOF-based cotton fabrics with switchable superwettability for oil-water separation[J]. Chemical Engineering Science, 2022, 256:117695.
[48] Li H, Luo Y d, Yu F y, et al. In-situ construction of MOFs-based superhydrophobic/superoleophilic coating on filter paper with self-cleaning and antibacterial activity for efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625:126976.
[49] Kim J, Khan S, Wu P, et al. Self-charging wearables for continuous health monitoring[J]. Nano Energy, 2021, 79: 105419.
[50] Zhu T x, Ni Y m, Zhao K y, et al. A breathable knitted fabric-based smart system with enhanced superhydrophobicity for drowning alarming[J]. ACS nano, 2022, 16(11): 18018-18026.
[51] Yang G L, Jiang X L, Xu H, et al. Applications of MOFs as luminescent sensors for environmental pollutants[J]. Small, 2021, 17(22): 2005327.
[52] Zhu G J, Ren P G, Guo H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials & Interfaces, 2019, 11(26):23649-23658.
[53] Sun C c, Wang W k, Mu X y, et al. Efficiently regulating the electrical properties of flexible fabric-based Cu3(BTC)2 thin film by introducing various guest molecules[J]. Advanced Materials Interfaces, 2022, 9(3):2101810.
[54] Liu J b, Shang Y h, Xu J q, et al. A novel electrochemical immunosensor for carcinoembryonic antigen based on Cu-MOFs-TB/polydopamine nanocarrier[J]. Journal of Electroanalytical Chemistry, 2020, 877:114563.
[55] He B s, Dong X z. Nb. BbvCI powered DNA walking machine-based Zr-MOFs-labeled electrochemical aptasensor using Pt@ AuNRs/Fe-MOFs/PEI-rGO as electrode modification
|