Advanced Textile Technology ›› 2025, Vol. 33 ›› Issue (03): 118-125.

Previous Articles    

Deformation properties of wearable woven fabrics based on nickel-titanium alloy wires

  

  1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Online:2025-03-10 Published:2025-03-20

含有镍钛合金丝的服用机织面料的形变性能

  

  1. 北京服装学院材料设计与工程学院,北京  100029

Abstract: The rapid development of smart wearable technology has driven the growth in demand for smart clothing fabrics. These fabrics need to have good intelligent deformation properties. At present, the realization of this function mainly relies on inflatable structures or deformation components, of which deformation components are divided into two categories: mechanical alloys and shape memory alloys. Mechanical deformation components have strong visual effects and are suitable for decorative clothing, but affect comfort; while shape memory alloy materials have little impact on comfort, but require high weaving techniques. For woven fabrics based on nickel-titanium memory alloy wires, the parameters of the nickel-titanium alloy wires, the fabric structure, the type of yarn used, and the weaving density all affect the deformation properties of the fabric. In recent years, there have been relatively little research on woven deformable fabrics based on shape memory alloy materials for apparel applications.
This paper used nickel-titanium memory alloy wires as local weft yarn to weave 13 types of woven fabrics for apparel. It studied the impact of fabric structure, nickel-titanium alloy wire diameter, and yarn materials on the deformation time, deformation degree, and deformation recovery of the fabrics. Results of the research on the deformation time of samples indicated the following: the longer the float line of the nickel-titanium alloy wire, the greater the ratio of nickel-titanium alloy wire diameter to yarn diameter, the higher the elasticity or smoothness of the yarn, and the shorter the deformation time of the sample. Results of the research on the deformation degree indicated the following: the longer the float line of the nickel-titanium alloy wire, the higher the elasticity or smoothness of the yarn, and the greater the degree of deformation of the sample. For the test of the deformation recovery of the sample, the results were as follows: the longer the float line of the nickel-titanium alloy wire, the higher the elasticity of the yarn, and the better the deformation recovery of the sample.
The study draws the following conclusions: the more weft structure points in the complete fabric, that is, the longer the float line of the nickel-titanium alloy wire, the fabric exhibits shorter deformation time, greater deformation degree, and better recovery. When the float line of the fabric increases to a certain extent, the deformation property of the fabric tends to stabilize. The larger the ratio of the diameter of the nickel-titanium alloy wire to the diameter of the yarn, the fabric exhibits shorter deformation time, greater deformation degree, and better recovery. When the ratio of the diameter of the nickel-titanium alloy wire to the yarn diameter increases to a certain extent, the deformation property of the fabric tends to stabilize. Yarn materials with elasticity and smooth surface are more conducive to improving the deformation property of woven fabrics for apparel.

Key words: shape memory alloy, nickel-titanium alloy wire, intelligent deformation, deformation properties, wearable fabrics

摘要: 为开发具有形状记忆功能的服用机织面料,利用镍钛合金丝为局部纬纱,织造了13种服用机织面料,研究面料组织结构、镍钛合金丝直径以及纱线材质对面料的形变时间、形变程度和形变回复性的影响。结果表明:织物完全组织的浮线越长,镍钛合金丝直径与纱线直径的比值越大,纱线的弹性和光滑程度越高,面料样品的形变性能越好。但浮线长度、镍钛合金丝直径与纱线直径的比值、纱线弹性和光滑度增加到一定程度后,面料的形变能力基本恒定。研究结果可为含有镍钛合金丝的服用机织面料开发提供参考,有助于机织形状记忆面料在服装上的设计应用。

关键词: 形状记忆合金, 镍钛合金丝, 智能变形, 形变性能, 服用面料

CLC Number: