[1]崔静. 新型锌基抗菌剂的设计合成及其在棉织物中的耐久性研究[D]. 青岛: 青岛大学, 2023.
CUI Jing. Design and Synthesis of Novel Zinc-Based Antibacterial Agent and its Durability in Cotton Fabric[D]. Qingdao: Qingdao University, 2023.
[2]刘佳佳. 基于棉的金属有机骨架ZIFs膜的制备及其性能研究[D]. 上海: 东华大学, 2021.
LIU Jiajia. Preparation and Properties of Zeolitic Imidizolate Framework Membranes on Cotton[D]. Shanghai: Donghua University, 2021.
[3]孙晓萱, 高建新, 李杭, 等. 金属抗菌机理的研究进展[J]. 功能材料, 2020, 51(9): 9066-9071.
SUN Xiaoxuan, GAO Jianxin, LI Hang, et al. Research progress on antimicrobial mechanism of metals[J]. Journal of Functional Materials, 2020, 51(9): 9066-9071.
[4]CHEN Z, XING F, YU P, et al. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications[J]. Acta Biomaterialia, 2024, 175: 27-54.
[5]胡夜晨. ZnO基抗菌棉织物的制备及抗菌机理研究[D]. 杭州:浙江理工大学, 2023.
HU Yechen. Fabrication of ZnO-based Antibacterial Cotton Fabrics and Mechanism Study[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[6]FREI A, VERDEROSA A D, ELLIOTT A G, et al. Metals to combat antimicrobial resistance[J]. Nature Reviews Chemistry, 2023, 7(3): 202-224.
[7]YUAN Y, WU H, LU H, et al. ZIF nano-dagger coated gauze for antibiotic-free wound dressing[J]. Chemical Communications, 2019, 55(5): 699-702.
[8]王宗乾, 何铠君, 吴开明, 等. 自清洁功能性纺织品研究进展[J]. 现代纺织技术, 2014, 22(1): 60-64.
WANG Zongqian, HE Kaijun, WU Kaiming, et al. Research progress of self-cleaning functional textiles[J]. Advanced Textile Technology, 2014, 22(1): 60-64.
[9]邵明军, 蹇玉兰, 柴希娟, 等. MTMS水解溶液整理棉织物的性能研究[J]. 棉纺织技术, 2024, 52(3): 6-12.
SHAO Mingjun, JIAN Yulan, CHAI Xijuan, et al. Study on property of cotton fabric modified by MTMS hydrolysis solution[J]. Cotton Textile Technology, 2024, 52(3): 6-12.
[10]XU Q, KE X, CAI D, et al. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an l-cysteine binding effect[J]. Cellulose, 2018, 25: 2129-2141.
[11]ZHANG X, LI H, MIAO W, et al. Vertically zeolitic imidazolate framework-L coated mesh with dagger-like structure for oil/water separation[J]. AIChE Journal, 2019, 65(6): e16596.
[12]LEWIS A, HAZELTON P, BUTT F S, et al. Growth of nanostructured antibacterial zeolitic imidazolate framework coatings on porous surfaces[J]. ACS Applied Nano Materials, 2022, 5(11): 16250-16263.
[13]LI Z, GOU M, YUE X, et al. Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects[J]. Journal of Hazardous Materials, 2021, 416: 125888.
[14]FAN B, WU L, MING A, et al. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 242: 125066.
[15]QIN H, ZHANG Y, JIANG J, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269.
[16]TANG W, CHENG Y, JIAN Y, et al. Synergetic strategy to fabricate superhydrophobic wood by MTMS for improving dimensional stability, durability and self-cleaning ability[J]. Materials Letters, 2023, 343: 134348.
[17]LI Z, JIA M, DOBLE S, et al. Energy band architecture of a hierarchical ZnO/Au/CuxO nanoforest by mimicking natural superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40490-40502.
[18]PONGPRAYOON T, YANUMET N, O’REAR E A, et al. Surface characterization of cotton coated by a thin film of polystyrene with and without a cross-linking agent[J]. Journal of Colloid and Interface Science, 2005, 281(2): 307-315.
[19]YANG Y, GUO Z, HUANG W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric[J]. Applied Surface Science, 2020, 503: 144079.
[20]HUANG C, ZHANG H, ZHENG K, et al. Two-dimensional hydrophilic ZIF-L as a highly-selective adsorbent for rapid phosphate removal from wastewater[J]. Science of the Total Environment, 2021, 785: 147382.
[21]GU Q, ALBERT NG T C, SUN Q, et al. Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment[J]. RSC Advances, 2019, 9(3): 1591-1601.
[22]赵文潇, 王群, 龚向宇, 等. 超疏水纺织品的构建及其应用研究[J]. 丝绸, 2023, 60(12): 42-50.
ZHAO Wenxiao, WANG Qun, GONG Xiangyu, et al. Study on the construction and applications of superhydrophobic textiles[J]. Journal of Silk, 2023, 60(12): 42-50.
[23]POLASH S A, KHARE T, KUMAR V, et al. Prospects of exploring the metal-organic framework for combating antimicrobial resistance[J]. ACS Applied Bio Materials, 2021, 4(12): 8060-8079.
|