[1] 胡明茂, 齐二石, 赵锎, 等. 考虑效率差异和流动分配的混流装配线工人优化[J]. 工业工程, 2019, 22(3): 9-18.
HU Mingmao, QI Ershi, ZHAO Kai, et al. An optimization of workers in mixed assembly line considering efficiency differences and distribution in different station[J]. Industrial Engineering Journal, 2019, 22(3): 9-18.
[2] KIM M, KIM S. Effects of step-by-step line balancing in apparel assembly line[J]. Journal of Engineered Fibers and Fabrics, 2023, 18.
[3] COSTA F, THÜRER M, PORTIOLI-STAUDACHER A. Heterogeneous worker multi-functionality and efficiency in dual resource constrained manufacturing lines: an assessment by simulation[J]. Operations Management Research, 2023, 16(3): 1476-1489.
[4] 董平军, 俞佳安. 考虑学习—遗忘效应的服装缝制车间生产调度模型[J]. 现代纺织技术, 2023, 31(3): 81-91.
DONG Pingjun, YU Jia'an. Production scheduling model of garment sewing workshop with learning and forgetting effects[J]. Advanced Textile Technology, 2023, 31(3): 81-91.
[5] 荀培莉, 杜劲松, 李津, 等. 服装流水线人员与生产岗位契合度模型[J]. 东华大学学报(自然科学版), 2022, 48(5): 108-114.
XUN Peili, DU Jinsong, LI Jin, et al. A model of matching degree between the personnel and production post in garment assembly line[J]. Journal of Donghua University (Natural Science), 2022, 48(5): 108-114.
[6] JAVED I, MD DAWAL S Z, NUKMAN Y, et al. Prediction of work productivity outcomes by identifying critical risk factors among garment industry workers[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(4): 2238-2249.
[7] CHOURABI Z, BABAY A, KHEDHER F, et al. A new objective function for the assembly line balancing optimizationin terms of workers' global competence[J]. Industria Textila, 2020, 71(4): 398-407.
[8] AL IMRAN A, AMIN M N, ISLAM RIFAT M R, et al. Deep Neural Network Approach for Predicting the Productivity of Garment Employees[C]//2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). Paris, France. IEEE, 2019: 1402-1407.
[9] 方逸雯, 刘媛华. 基于机器学习的员工生产效率预测[J]. 建模与仿真, 2023, 12(2): 830-840.
FANG Yiwen, LIU Yuanhua. Research on productivity prediction of employees based on machine learning[J]. Modeling and Simulation, 2023, 12(2): 830-840.
[10] RANGANATHAN A, BENSON A. A numbers game: quantification of work, auto-gamification, and worker productivity[J]. American Sociological Review, 2020, 85(4): 573-609.
[11] MITCHELL R J, BATES P. Measuring health-related productivity loss[J]. Population Health Management, 2011, 14(2): 93-98.
[12] BUAPETCH A, LAGAMPAN S, FAUCETT J, et al. The Thai version of effort-reward imbalance questionnaire (Thai ERIQ): A study of psychometric properties in garment workers[J]. Journal of Occupational Health, 2008, 50(6): 480-491.
[13] 宋莹. 基于层次分析法的服装流水线影响因素等级评价[J]. 毛纺科技, 2020, 48(3): 61-64.
SONG Ying. Evaluation of influencing factors level of garment line based on analytic hierarchy process[J]. Wool Textile Journal, 2020, 48(3): 61-64.
[14] 郭鹏, 郝东辉, 郑鹏, 等. 考虑工人疲劳的双资源柔性作业车间调度优化[J]. 浙江大学学报(工学版), 2023, 57(9): 1804-1813.
GUO Peng, HAO Donghui, ZHENG Peng, et al. Scheduling optimization of dual resource-constrained flexible job shop considering worker fatigue[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(9): 1804-1813.
[15] 刘丽娴, 王贺林, 郑泽宇, 等. 基于大数据技术的服装智能制造创新模式[J]. 针织工业, 2024(2): 49-54.
LIU Lixian, WANG Helin, ZHENG Zeyu, et al. Innovative mode of clothing intelligent manufacturing based on big data technology[J]. Knitting Industries, 2024(2): 49-54.
[16] 封周权, 邓佳逸, 华旭刚, 等. 基于贝叶斯优化支持向量回归的流线型箱梁颤振气动外形优化方法[J]. 东南大学学报(自然科学版), 2024, 54(2): 275-284.
FENG Zhouquan, DENG Jiayi, HUA Xugang, et al. Flutter aerodynamic shape optimization method for streamlined box girders based on support vector regression with Bayesian optimization[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(2): 275-284.
[17] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[18] 马随东, 艾尔肯·亥木都拉, 郑威强. 改进GWO算法求解柔性作业车间调度问题[J]. 机床与液压, 2024, 52(4): 132-139.
MA Suidong, AIERKEN Helmudura, ZHENG Weiqiang. Improved GWO algorithm for flexible job shop scheduling problem[J]. Machine Tool & Hydraulics, 2024, 52(4): 132-139.
|