Advanced Textile Technology ›› 2025, Vol. 33 ›› Issue (04): 1-12.
Online:
2025-04-10
Published:
2025-04-17
CLC Number:
YANG Ruihua, HUA Yuzhu. Research progress of textile materials with negative Poisson's ratio[J]. Advanced Textile Technology, 2025, 33(04): 1-12.
杨瑞华, 华昱竹. 负泊松比结构纺织材料的研究进展[J]. 现代纺织技术, 2025, 33(04): 1-12.
[1] EVANS K E, NKANSAH M A, HUTCHINSON I J, et al. Molecular network design[J]. Nature, 1991, 353(6340): 124. [2] 李思明, 胡雨洁, 方镁淇, 等. 具有形状记忆功能的负泊松比结构材料的研究进展[J]. 服装学报, 2020, 5(4): 290-299. LI Siming, HU Yujie, FANG Meiqi, et al. Research progress of negative Poisson's ratio structures and materials with memory function[J]. Journal of Clothing Research, 2020, 5(4): 290-299. [3] LOVE A E H. A Treatise on the Mathematical Theory of Elasticity [M]. United Kingdom: Cambridge university press, 2013. [4] LAKES R. Foam structures with a negative Poisson′s ratio[J]. Science, 1987, 235(4792): 1038-1040. [5] CUTHBERT T J, HANNIGAN B C, ROBERJOT P, et al. HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit[J]. Advanced Materials, 2023, 35(10): 2209321. [6] ALDERSON A, RASBURN J, AMEER-BEG S, et al. An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties[J]. Industrial & Engineering Chemistry Research, 2000, 39(3): 654-665. [7] MILLER W, HOOK P B, SMITH C W, et al. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite[J]. Composites Science and Technology, 2009, 69(5): 651-655. [8] SCARPA F. Auxetic materials for bioprostheses[J]. IEEE Signal Processing Magazine, 2008, 25(5): 128-126. [9] 伊丽莎白·兰格文. 具有拉胀结构的双层鞋底系统: CN108778021B [P]. 2021-04-06. ELIZABETH L. Double layer sole system with auxetic structure: CN108778021B [P]. 2021-04-06. [10] 邓·雄·李, 莫汉库马·克里希南·瓦利娅姆博特, 罗宾·耀, 等. 由织物结构形成并包括加硬部分以提供定制的患者接口: CN115175719A[P]. 2022-10-11. DENG X L, MOHANKUMA K V, ROBIN Y, et al. Formed from a fabric structure and including reinforced parts to provide customized patient interfaces: CN115175719A[P]. 2022-10-11. [11] 颜茹玉. 新型具有拉胀材料内衬的双肩背包肩带: CN107713294A[P]. 2018-02-23. YAN Ruyu. A new type of backpack shoulder strap with auxetic material lining: CN107713294A[P]. 2018-02-23. [12] WANG Z, HU H. 3D auxetic warp-knitted spacer fabrics[J]. Physica Status Solidi (b), 2014, 251(2): 281-288. [13] GIBSON M F A, SCHAJER G S, ROBERTSON C I.. The mechanics of two-dimensional cellular materials[J]. Royal Society, 1982, 382: 35-42. [14] DOBNIK DUBROVSKI P, NOVAK N, BOROVINŠEK M, et al. In-plane behavior of auxetic non-woven fabric based on rotating square unit geometry under tensile load[J]. Polymers, 2019, 11(6): 1040. [15] WANG Y C, SHEN M W, LIAO S M. Microstructural effects on the Poisson's ratio of star-shaped two-dimensional systems (phys. status solidi B12/2017)[J]. Physica Status Solidi (b), 2017, 254(12): 1770264. [16] THEOCARIS P S, STAVROULAKIS G E, PANAGIOTOPOULOS P D. Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach[J]. Archive of Applied Mechanics, 1997, 67(4): 274-286. [17] LARSEN U D, SIGNUND O, BOUWSTA S. Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio[J]. Journal of Microelectromechanical Systems, 1997, 6(2): 99-106. [18] 蒋伟, 马华, 王军, 等. 基于环形蜂窝芯结构的负泊松比机械超材料[J]. 科学通报, 2016, 61(13): 1421-1427. JIANG Wei, MA Hua, WANG Jun, et al. Mechanical metamaterial with negative Poisson's ratio based on circular honeycomb core[J]. Chinese Science Bulletin, 2016, 61(13): 1421-1427. [19] EVANS K E, NKANSAH M A, HUTCHINSON I J. Auxetic foams: Modelling negative Poisson's ratios[J]. Acta Metallurgica et Materialia, 1994, 42(4): 1289-1294. [20] WANG X T, WANG B, LI X W, et al. Mechanical properties of 3D re-entrant auxetic cellular structures[J]. International Journal of Mechanical Sciences, 2017, 131: 396-407. [21] GRIMA J N, EVANS K E. Auxetic behavior from rotating squares[J]. Journal of Materials Science Letters, 2000, 19(17): 1563-1565. [22] RAFSANJANI A, PASINI D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[J]. Extreme Mechanics Letters, 2016, 9: 291-296. [23] ZHANG G H, GHITA O, EVANS K E. The fabrication and mechanical properties of a novel 3-component auxetic structure for composites[J]. Composites Science and Technology, 2015, 117: 257-267. [24] LIU S, DU Z, XIE K, et al. A novel interlaced-helical wrapping yarn with negative Poisson’s ratio[J]. Fibers and Polymers, 2018, 19(11): 2411-2417. [25] ZHANG G, GHITA O R, LIN C, et al. Large-scale manufacturing of helical auxetic yarns using a novel semi-coextrusion process[J]. Textile Research Journal, 2018, 88(22): 2590-2601. [26] CHEN J, DU Z. Structural design and performance characterization of stable helical auxetic yarns based on the hollow-spindle covering system[J]. Textile Research Journal, 2020, 90(3/4): 271-281. [27] 郭晨宇. 三组分环锭纺负泊松比纱的制备及性能研究[D]. 无锡:江南大学,2023. GUO Chenyu. Preparation and Performance Study of Yarn Properties of Negative Poisson's Ratio with Three Components Based on Ring Spinning[D].Wuxi: Jiangnan University, 2023. [28] GE Z, HU H, LIU S. A novel plied yarn structure with negative Poisson's ratio[J]. The Journal of the Textile Institute, 2016, 107(5): 578-588. [29] BHATTACHARYA S, ZHANG G H, GHITA O, et al. The variation in Poisson's ratio caused by interactions between core and wrap in helical composite auxetic yarns[J]. Composites Science and Technology, 2014, 102: 87-93. [30] DU Z, ZHOU M, HE L, et al. Study on negative Poisson's ratio of auxetic yarn under tension: Part 2: Experimental verification[J]. Textile Research Journal, 2015, 85(7): 768-774. [31] DU Z, ZHOU M, LIU H, et al. Study on negative Poisson’s ratio of auxetic yarn under tension: Part 1–Theoretical analysis[J]. Textile Research Journal, 2015, 85(5): 487-498. [32] 刘赛. 负泊松比纱线的结构成形与拉胀机理建模研究[D]. 上海: 东华大学, 2019. LIU Sai. Study on Structure Forming and Bulging Mechanism Modeling of Negative Poisson's Ratio Yarn[D]. Shanghai: Donghua University, 2019. [33] JIANG N, HU H. A study of tubular braided structure with negative Poisson's ratio behavior[J]. Textile Research Journal, 2018, 88(24): 2810-2824. [34] SHAH A, SHAHID M, HARDY J, et al. Effects of braid angle and material modulus on the negative Poisson's ratio of braided auxetic yarns[J]. Crystals, 2022, 12(6): 781. [35] DU Z, HE L, LIU Z. Design, preparation and characterization of braiding auxetic yarns with a high negative Poisson's ratio[J]. Textile Research Journal, 2024, 94(1/2): 82-89. [36] UGBOLUE S C, KIM Y K, WARNER S B, et al. The formation and performance of auxetic textiles. Part I: theoretical and technical considerations[J]. Journal of the Textile Institute, 2010, 101(7): 660-667. [37] UGBOLUE S C, KIM Y K, WARNER S B, et al. The formation and performance of auxetic textiles. Part II: geometry and structural properties[J]. Journal of the Textile Institute, 2011, 102(5): 424-433. [38] ALDERSON K, ALDERSON A, ANAND S, et al. Auxetic warp knit textile structures[J]. Physica Status Solidi (b), 2012, 249(7): 1322-1329. [39] MA P, CHANG Y, JIANG G. Design and fabrication of auxetic warp-knitted structures with a rotational hexagonal loop[J]. Textile Research Journal, 2016, 86(20): 2151-2157. [40] HU H, WANG Z, LIU S. Development of auxetic fabrics using flat knitting technology[J]. Textile Research Journal, 2011, 81(14): 1493-1502. [41] GAO Y, CHEN X. A study of woven fabrics made of helical auxetic yarns[J]. Applied Composite Materials, 2022, 29(1): 109-119. [42] GAO Y, CHEN X. Finite element analysis study of parameters influencing the Poisson’s ratio of auxetic woven fabrics[J]. Textile Research Journal, 2024, 94(7/8): 886-905. [43] KAMRUL H, ZULIFQAR A, HU H. Deformation behavior of auxetic woven fabric based on re-entrant hexagonal geometry in different tensile directions[J]. Textile Research Journal, 2020, 90(3/4): 410-421. [44] ALI M, ZEESHAN M, QADIR M B, et al. Development and mechanical characterization of weave design based 2D woven auxetic fabrics for protective textiles[J]. Fibers and Polymers, 2018, 19(11): 2431-2438. [45] ZULIFQAR A, HUA T, HU H. Single- and double-layered bistretch auxetic woven fabrics made of nonauxetic yarns based on foldable geometries[J]. Physica Status Solidi (b), 2020, 257(10): 1900156. [46] WASEEM ULLAH KHAN R M, HUSSAIN M, NAWAB Y, et al. Influence of tetrahedral architectures on fluid transmission and heat retention behaviors of auxetic weaves[J]. Thermal Science and Engineering Progress, 2023, 42: 101946. [47] WANG Z, HU H, XIAO X. Deformation behaviors of three-dimensional auxetic spacer fabrics[J]. Textile Research Journal, 2014, 84(13): 1361-1372. [48] WANG Z, HU H. Tensile and forming properties of auxetic warp-knitted spacer fabrics[J]. Textile Research Journal, 2017, 87(16): 1925-1937. [49] CHANG Y, MA P. Energy absorption and Poisson's ratio of warp-knitted spacer fabrics under uniaxial tension[J]. Textile Research Journal, 2019, 89(6): 903-913. [50] CHANG Y, LIU Y, ZHAO S, et al. Design and manufacture of three-dimensional auxetic warp-knitted spacer fabrics based on re-entrant and rotating geometries[J]. Textile Research Journal, 2022, 92(3/4): 467-478. [51] CHANG Y, HU H. 3D fabrics with negative Poisson's ratio: a review[J]. Applied Composite Materials, 2022, 29(1): 95-108. [52] LIU Y, HU H, LAM J K C, et al. Negative Poisson's ratio weft-knitted fabrics[J]. Textile Research Journal, 2010, 80(9): 856-863. [53] 宋晓霞, 陈秀玲. 基于折叠结构的负泊松比纬编针织物设计[J]. 服装学报, 2023, 8(1): 37-41. SONG Xiaoxia, CHEN Xiuling. Design of weft knitted fabric with negative Poisson's ratio based on folded structure[J]. Journal of Clothing Research, 2023, 8(1): 37-41. [54] ANAS M S, AWAIS H, ALI HAMDANI S T, et al. Investigating the thermo-physiological comfort properties of weft-knitted smart structures having a negative Poisson's ratio[J]. Advances in Materials Science and Engineering, 2022, 1: 1896634. [55] BOAKYE A, CHANG Y, RAFIU K R, et al. Design and manufacture of knitted tubular fabric with auxetic effect[J]. The Journal of the Textile Institute, 2018, 109(5): 596-602. [56] YANG T, MA Y, LIU S, et al. Characterization of negative Poisson's ratio of two/three dimensional auxetic knitted fabric with PET/PA/cotton from folded structures[J]. The Journal of the Textile Institute, 2023,3: 1-9. [57] KHAN M I, AKRAM J, UMAIR M, et al. Development of composites, reinforced by novel 3D woven orthogonal fabrics with enhanced auxeticity[J]. Journal of Industrial Textiles, 2019, 49(5): 676-690. [58] ULLAH T, HUSSAIN M, ALI M, et al. Auxetic behavior of 3D woven warp, weft, and bidirectional interlock structures[J]. Journal of Natural Fibers, 2023, 20(1):1322. [59] ZEESHAN M, HU H, ZULIFQAR A. Three-dimensional narrow woven fabric with in-plane auxetic behavior[J]. Textile Research Journal, 2022, 92(23/24): 4695-4708. [60] ZEESHAN M, HU H, ETEMADI E. Geometric analysis of three-dimensional woven fabric with in-plane auxetic behavior[J]. Polymers, 2023, 15(5): 1326. [61] CUTHBERT T J, HANNIGAN B C, ROBERJOT P, et al. HACS: helical auxetic yarn capacitive strain sensors with sensitivity beyond the theoretical limit[J]. Advanced Materials, 2023, 35(10): 2209321. [62] HANNIGAN B C, CUTHBERT T J, AHMADIZADEH C, et al. Distributed sensing along fibers for smart clothing[J]. Science Advances, 2024, 10(12): 9708. [63] WU R, SEO S, MA L, et al. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network[J]. Nano-Micro Letters, 2022, 14(1): 139. [64] JIAO Y, LI C, LIU L, et al. Construction and application of textile-based tissue engineering scaffolds: A review[J]. Biomaterials Science, 2020, 8(13): 3574-3600. [65] ALDERSON K L, WEBBER R S, KETTLE A P, et al. Novel fabrication route for auxetic polyethylene. Part 1. Processing and microstructure[J]. Polymer Engineering & Science, 2005, 45(4): 568-578. [66] DESHPANDE M V, WEST A J, BERNACKI S H, et al. Poly(ε-caprolactone) resorbable auxetic designed knitted scaffolds for craniofacial skeletal muscle regeneration[J]. Bioengineering, 2020, 7(4): 134. [67] SHUKLA S, SHARMA J, SINGH O, et al. Auxetic textiles, composites and applications[J]. Textile Progress, 2024, 56(3): 323-414. [68] SZURGOTT P, KLASZTORNY M, NIEZGODA T, et al. Dynamic tests for energy absorption by selected auxetic fabrics[J]. Journal of Engineered Fibers and Fabrics, 2017, 12(4): 155892501701200. [69] WANG Z, HU H. 3D auxetic warp-knitted spacer fabrics[J]. Physica Status Solidi (b), 2014, 251(2): 281-288. [70] CHANG Y, MA P, JIANG G. Energy absorption property of warp-knitted spacer fabrics with negative Possion's ratio under low velocity impact[J]. Composite Structures, 2017, 182: 471-477. [71] SUN Y, XU W, WEI W, et al. Stab-resistance of auxetic weft-knitted fabric with Kevlar fibers at quasi-static loading[J]. Journal of Industrial Textiles, 2021, 50(9): 1384-1396. |
[1] | ZHU Shiqian, TAN Yini, LIU Xiaogang. Research progress of flexible composite conductive fiber in smart textiles [J]. Advanced Textile Technology, 2022, 30(4): 1-11. |
[2] | YAN Xiaofei, FANG Jie, ZHU Chenkai, LI Jiawei, ZHU Chengyan, QI Dongmin. Preparation and properties of two-dimensional material MXene (Ti3C2Tx)and Its application in textile field [J]. Advanced Textile Technology, 2022, 30(2): 1-8. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||