Advanced Textile Technology ›› 2025, Vol. 33 ›› Issue (04): 92-104.
Previous Articles Next Articles
Online:
2025-04-10
Published:
2025-04-17
CLC Number:
HOU Jinli, ZHENG Junjie, WANG Chenxiao, Xiong Fan, YANG Chaoran, LI Yunfei, FAN Mengzhao. Research progress on fabric-based wearable ECG electrodes[J]. Advanced Textile Technology, 2025, 33(04): 92-104.
周金利, 郑俊杰, 王晨晓, 熊帆, 杨朝然, 李云飞, 樊蒙召. 织物基可穿戴心电电极的研究进展[J]. 现代纺织技术, 2025, 33(04): 92-104.
[1]Zhonghua Xin Xue Guan Bing Za Zhi. Chinese guidelines for the prevention of cardiovascular diseases(2017)[J]. Chinese Journal of Cardiology, 2018, 46(1): 10-25. [2]中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook [M]. Beijing: China Statistics Press, 2022. [3]郑鹏,陈雁.纺织电极在心电监测服装中的应用与研究[J].丝绸,2018,55(6):38-44. ZHENG Peng, CHEN Yan. Applications and researches of textile electrode in ECG monitoring clothing[J]. Journal of Silk, 2018, 55(6): 38-44. [4]LIU X, WANG H, LI Z, et al. Deep learning in ECG diagnosis: A review[J]. Knowledge-Based Systems, 2021, 227(10): 107187. [5]YAO S, ZHU Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: A review[J]. JOM, 2016, 68(4): 1145-1155. [6]张驰, 魏德健, 曹慧 . 用于心电信号采集的织物电极技术的研究进展[J]. 生物医学工程学杂志, 2018, 35(5): 811-816. ZHANG Chi, WEI Dejian, CAO Hui. Research progress on fabric electrode technologies for electrocardiogram signal acquisition[J]. Journal of Biomedical Engineering, 2018, 35(5): 811-816. [7]张赢心,徐磊,王大伟,等.织物电极在生物电信号监测中的研究进展[J].现代纺织技术,2022,30(4):42-49. ZHANG Yingxin, XU Lei, WANG Dawei, et al. Research progress of fabric electrode in bioelectric signal monitoring[J]. Advanced Textile Technology, 2022, 30(4): 42-49. [8]MASIHI S, PANAHI M, MADDIPATLA D, et al. Development of a flexible wireless ECG monitoring device with dry fabric electrodes for wearable applications[J]. IEEE Sensors Journal, 2022, 22(12): 11223-11232. [9]SPEKHORST H, SIPPENSGROENEWEGEN A, DAVID G K, et al. Radiotransparent carbon electrode for ECG recordings in the catheterization laboratory[J]. IEEE Transactions on Biomedical Engineering, 1988, 35(5): 402-406. [10]GENDERINGEN H R V, SPRENGER M, RIDDER J W D, et al. Carbon-fiber electrodes and leads for electrocardiography during MR imaging[J]. Radiology, 1989, 171(3): 872. [11]CIESLAK M, RYAN W S, MACY A, et al. Simultaneous acquisition of functional magnetic resonance images and impedance cardiography[J]. Psychophysiology, 2015, 52(4): 481-488. [12]PAUL G, TORAH R, BEEBY S, et al. Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing[J]. Sensors and Actuators A: Physical, 2015, 221: 60-66. [13]张佳星, 王玉增, 陈慧, 等. 基于动植物蛋白的生物基塑料研究进展[J]. 皮革科学与工程, 2021, 31(2): 9-15. ZHANG Jiaxing, WANG Yuzeng, CHEN Hui, et al. Advances in bioplastics based on animal and plant proteins[J]. Leather Science and Engineering, 2021, 31(2): 9-15. [14]KIM T, PARK J, SOHN J, et al. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes[J]. ACS Nano, 2016, 10(4): 4770-4778. [15]SALVO P, RAEDT R, CARRETTE E, et al. A 3D printed dry electrode for ECG/EEG recording[J]. Sensors and Actuators A: Physical, 2012, 174: 96-102. [16]MORENO A, WALTON R D, BAYER J D. Stretchable conductive fabric for cardiac electrophysiology applications[J]. ACS Applied Bio Materials, 2020, 3(5): 3114-3122. [17]SAADATNIA Z, GHAFFARIMOSANENZADEH S, MARQUEZ CHIN M, et al. Flexible, air dryable, and fiber modified aerogel-based wet electrode for electrophysiological monitoring[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(6): 1820-1827. [18]WANG Y, QU Z, WANG W, et al. PVA/CMC/PEDOT: PSS mixture hydrogels with high response and low impedance electronic signals for ECG monitoring[J]. Colloids and Surfaces B: Biointerfaces, 2021, 208: 112088. [19]SINGH O P, BOCCHINO A, GUILLERM T, et al. Flexible, conductive fabric-backed, microneedle electrodes for electrophysiological monitoring[J]. Advanced Materials Technologies, 2024, 9(3): 2301606. [20]SHIN J H, CHOI J Y, JUNE K, et al. Polymeric conductive adhesive-based ultrathin epidermal electrodes for long-term monitoring of electrophysiological signals[J]. Advanced Materials (Deerfield Beach, Fla), 2024, 36(23): 2313157. [21]ESKANDARIAN L, PAJOOTAN E, TOOSSI A, et al. Dry fiber-based electrodes for electrophysiology applications[J]. Advanced Fiber Materials, 2023, 5(3): 819-846. [22]CHANSAENGSRI K, TUNHOO B, ONLAOR K, et al. Preparation of conductive screen-printing ink for high-performance bendable and wearable ECG electrodes on fabric substrates[J]. IEEE Sensors Journal, 2022, 22(24): 23683-23691. [23]刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1): 67-83. LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83. [24]HUANG C Y, CHIU C W. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring[J]. ACS Applied Electronic Materials, 2021, 3(2): 676-686. [25]XU H, LV Y, QIU D, et al. An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring[J]. Nanoscale, 2019, 11(4): 1570-1578. [26]GAUTHIER N, ROUDJANE M, FRASIE A, et al. Multimodal electrophysiological signal measurement using a new flexible and conductive polymer fiber-electrode[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2020, 2020: 4373-4376. [27]CHIU C W, HUANG C Y, LI J W, et al. Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42441-42453. [28]HE D, QIN H, QIAN L, et al. Wearable cellulosic textile electrodes with high washability based on silver nanowires to capture electrocardiogram[J]. Fibers and Polymers, 2023, 24(6): 1963-1973. [29]SHAO W, CUI T, LI D, et al. Carbon-based textile sensors for physiological-signal monitoring[J]. Materials (Basel, Switzerland), 2023, 16(11): 3932. [30]LI S, XIAO X, HU J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring[J]. ACS Applied Electronic Materials, 2020, 2(8): 2282-2300. [31]QIU J, YU T, ZHANG W, et al. A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection[J]. ACS Materials Letters, 2020, 2(8): 999-1007. [32]LIN J H, FU X, LI T T, et al. Structure design of multi-functional flexible electrocardiogram electrodes based on PEDOT: PSS-coated fabrics[J]. Journal of Industrial Textiles, 2022, 51(S5): 8077-8091. [33]ZHOU Y, DING X, ZHANG J, et al. Fabrication of conductive fabric as textile electrode for ECG monitoring[J]. Fibers and Polymers, 2014, 15(11): 2260-2264. [34]WANG J, LI L, LIU H, et al. Graphene/carbon nanotube conductive ink-based biomimetic structure for self-powered flexible medical monitoring devices[J]. ACS Applied Nano Materials, 2024, 7(2): 1863-1875. [35]ADAMU B F. Permeability and moisture management properties of denim fabric made from cotton, spandex, and polyester[J]. Journal of the Institution of Engineers (India): Series E, 2022, 103(2): 253-258. [36]LU W, ZHANG Q, LIU N, et al. Nylon fabric/GO based self-powered humidity sensor based on the galvanic cell principle with high air permeability and rapid-response[J]. Small (Weinheim an Der Bergstrasse, Germany), 2024, 20(10): 2306463. [37]周金利,郑俊杰,刘思琪,等.不同制备工艺对织物电极心电信号质量的影响[J/OL].现代纺织技术,1-13[2024-09-06].http://kns.cnki.net/kcms/detail/33.1249.TS.20240827.1146.002.html. ZHOU Jinli, ZHENG Junjie, LIU Siqi, et al. Effect of different manufacturing processes on ECG signal quality of textile electrodes[J/OL]. Advanced Textile Technology, 1-13[2024-09-06].http://kns.cnki.net/kcms/detail/33.1249.TS.20240827.1146.002.html. [38]庞莉娜,王春红,王慧泉,等.织物心电电极研究进展[J].产业用纺织品,2021,39(5):1-6. PANG Lina, WANG Chunhong, WANG Huiquan, et al. Research progress of fabric ECG electrodes[J]. Technical Textiles, 2021, 39(5): 1-6. [39]林璐,孙吉海,肖学良.五枚三飞经面缎纹导电织物电极的心电采集性能[J].上海纺织科技,2021,49(10):50-53, 56. LIN Lu, SUN Jihai, XIAO Xueliang. Electrocardiograph acquisition performance of five pattern three flytype of warp-satin woven fabric as conductive electrode[J]. Shanghai Textile Science & Technology, 2021, 49(10): 50-53. [40]FOBELETS K, HAMMOUR G, THIELEMANS K. Knitted ECG electrodes in relaxed fitting garments[J]. IEEE Sensors Journal, 2023, 23(5): 5263-5269. [41]董科, 李思明, 吴官正, 等. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(1): 56-62. DONG Ke, LI Siming, WU Guanzheng, et al. Preparation and properties of carbon fiber/polyester electrocardiogram monitoring embroidery electrode[J]. Journal of Textile Research, 2020, 41(1): 56-62. [42]NIGUSSE A B, MALENGIER B, MENGISTIE D A, et al. Embroidered textile electrodes for long-term ECG monitoring[J]. IOP Conference Series: Materials Science and Engineering, 2023, 1266(1): 012002. [43]ALASSOD A, XU G. Comparative study of polypropylene nonwoven on structure and wetting characteristics[J]. The Journal of the Textile Institute, 2021, 112(7): 1100-1107. [44]MA C, HAO S, YU W, et al. Compliant and breathable electrospun epidermal electrode towards artifact-free electrophysiological monitoring[J]. Chemical Engineering Journal, 2024, 490: 151118. [45]章友鹤. 棉纺织生产基础知识与技术管理[M]. 北京: 中国纺织出版社, 2011. ZHANG Youhe. Basic Knowledge and Technical Management of Cotton Textile Production[M]. Beijing: China Textile & Apparel Press, 2011. [46]DONG J, TANG X, PENG Y, et al. Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding[J]. Nano Energy, 2023, 108: 108194. [47]PENG Y, DONG J, ZHANG Y, et al. Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles[J]. Nano Energy, 2024, 120: 109143. [48]叶华标,周金利,张焕焕,等.起绒织物心电电极的制备及其应用[J].上海纺织科技,2020,48(4):14-18. YE Huabiao, ZHOU Jinli, ZHANG Huanhuan, et al. Preparation and application of raised fabric ECG electrodes[J]. Shanghai Textile Science & Technology, 2020, 48(4): 14-18. [49]HEREDIA-RIVERA U, KRISHNAKUMAR A, KASI V, et al. Cold atmospheric plasma deposition of antibacterial polypyrrole-silver nanocomposites on wearable electronics for prolonged performance[J]. Journal of Materials Chemistry C, 2024, 12(31): 11861-11876. [50]WANG L, PAN Y, HE D, et al. Conductive polyester fabrics with high washability as electrocardiogram textile electrodes[J]. ACS Applied Polymer Materials, 2022, 4(2): 1440-1447. [51]WANG L, HE D, QIAN L, et al. Preparation of conductive cellulose fabrics with durable antibacterial properties and their application in wearable electrodes[J]. International Journal of Biological Macromolecules, 2021, 183: 651-659. [52]PAN Y, LU G, SU J, et al. Incorporating pre-stretching into electroless copper plating for conductivity improvement of elastic nylon fabric: application in ECG electrode[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(14): 942. [53]CHOI Y J, LEE J Y, KONG S H. Driver ECG measuring system with a conductive fabric-based dry electrode[J]. IEEE Access, 2018, 6: 415-427. [54]SHAIKH T N, CHAUDHARI S B, PATEL B H, et al. Gauging performance of biosynthesized silver nanoparticles loaded polypropylene nonwoven based textile electrodes for 3-lead health monitoring electro cardiogram on analogous system[J]. Journal of Industrial Textiles, 2022, 51(S3): 4350S-4371S. [55]张焕焕,周金利,张亚洲,等.灯芯绒心电织物电极的制备及性能[J].上海纺织科技, 2021,49(5):39-42,52. ZHANG Huanhuan, ZHOU Jinli, ZHANG Yazhou, et al. Preparation and performance of corduroy fabric ECG electrodes[J]. Shanghai Textile Science & Technology, 2021, 49(5): 39-42. [56]DONG J, PENG Y, LONG J, et al. An all-stretchable, ultraviolet protective, and electromagnetic-interference-free E-textile[J]. Advanced Functional Materials, 2023, 33(45): 2308426. [57]LI B M, YILDIZ O, MILLS A C, et al. Iron-on carbon nanotube (CNT) thin films for biosensing E-Textile applications[J]. Carbon, 2020, 168: 673-683. [58]LIM T, ZHANG H, LEE S. Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors[J]. APL Materials, 2021, 9(9): 091113. [59]ZOHAIR M, MOYER K, EAVES-RATHERT J, et al. Continuous energy harvesting and motion sensing from flexible electrochemical nanogenerators: toward smart and multifunctional textiles[J]. ACS Nano, 2020, 14(2): 2308-2315. [60]DU K, LIN R, YIN L, et al. Electronic textiles for energy, sensing, and communication[J]. iScience, 2022, 25(5): 104174. [61]PENG Y, DONG J, SUN J, et al. Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile[J]. Nano Energy, 2023, 110: 108374. [62]KHAN Y, GARG M, GUI Q, et al. Flexible hybrid electronics: Direct interfacing of soft and hard electronics for wearable health monitoring[J]. Advanced Functional Materials, 2016, 26(47): 8764-8775. [63]CAI Z, LUO K, LIU C, et al. Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board[J]. Technology and Health Care, 2017, 25(4): 815-821. [64]ZHOU W, LIN R, LI H, et al. Nano foldaway skin-like E-interface for detecting human bioelectrical signals[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 148-154. [65]RAUF S, BILAL R M, LI J, et al. Fully screen-printed and gentle-to-skin wet ECG electrodes with compact wireless readout for cardiac diagnosis and remote monitoring[J]. ACS Nano, 2024, 18(14): 10074-10087. [66]KIM C S, YANG H M, LEE J, et al. Self-powered wearable electrocardiography using a wearable thermoelectric power generator[J]. ACS Energy Letters, 2018, 3(3): 501-507. [67]ZOHAIR M, MOYER K, EAVES-RATHERT J, et al. Continuous energy harvesting and motion sensing from flexible electrochemical nanogenerators: toward smart and multifunctional textiles[J]. ACS Nano, 2020, 14(2): 2308-2315. [68]WENG W, CHEN P, HE S, et al. Smart electronic textiles[J]. Angewandte Chemie International Edition, 2016, 55(21): 6140-6169. [69]YU K, FENG L, CHEN Y, et al. Accurate wavelet thresholding method for ECG signals[J]. Computers in Biology and Medicine, 2024, 169: 107835. [70]KUMAR V, MUDULI P R. Attentive Bi-LSTM-based method for noise suppression in ambulatory ECG measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-9. [71]MA M, DU M, FENG Q, et al. A new particle filter algorithm filtering motion artifact noise for clean electrocardiogram signals in wearable health monitoring system[J]. The Review of Scientific Instruments, 2024, 95(1): 014101. [72]TIAN Y, KABIR M, ABDIZADEH M, et al. Modeling and reproducing textile sensor noise: Implications for textile-compatible signal processing algorithms[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(1): 243-253. [73]LEE S Y, SU P H, HUNG Y W, et al. Motion artifact reduction algorithm for wearable electrocardiogram monitoring systems[J]. IEEE Transactions on Consumer Electronics, 2023,69(3): 533-547. [74]KALRA A M, ANAND G, LOWE A, et al. A smart idea to reject motion artefacts from ECG measurements due to sensor-body impedance[J]. Sensors and Actuators A: Physical, 2024, 367: 114989. |
[1] | ZHOU Jinli, ZHENG Junjie, LIU Siqi, WANG Chenxiao, FAN Mengzhao, YANG Chaoran, LI Yunfei . Effect of different manufacturing processes on ECG signal quality of textile electrodes [J]. Advanced Textile Technology, 2025, 33(04): 113-121. |
[2] | MAO Dan, XIA Tian, XU Huiya, LI Yiran, WEN Run. Visual bibliometric analysis of smart wearable clothing for the elderly [J]. Advanced Textile Technology, 2025, 33(03): 92-101. |
[3] | ZHAO Shikang, WANG Hang, TIAN Mingwei. Parallel Electrode Electroluminescent Yarn Construction Molding and its Water Rescue Wearable Application [J]. Advanced Textile Technology, 2024, 32(4): 45-51. |
[4] | YUE Xinyana, HONG Jianhana, b . Research progress on wearable flexible sensors with one-dimensional structure [J]. Advanced Textile Technology, 2024, 32(2): 27-39. |
[5] | XIE Jinlin, ZHANG Jing, GUO Yuxing, ZHAO Zhihui, QIU Hua, GU Peng, . Application progress of conductive fibers in the application of new textiles [J]. Advanced Textile Technology, 2023, 31(6): 241-254. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||