Advanced Textile Technology ›› 2023, Vol. 31 ›› Issue (3): 102-112.
Previous Articles Next Articles
Received:
2022-07-05
Online:
2023-05-10
Published:
2023-05-25
通讯作者:
刘宇清,Email:liuyuqing@suda.edu.cn
作者简介:
杨婷(1999—),女,福建福州人,硕士研究生,主要从事纤维光催化还原方面的研究。
CLC Number:
YANG Ting, ZHANG Yeke, ZHOU Wenlong, LIU Yuqing. Application of photocatalytic titanium dioxide fibers in carbon dioxide reduction[J]. Advanced Textile Technology, 2023, 31(3): 102-112.
杨婷, 张叶轲, 周文龙, 刘宇清. TiO2纤维在光催化还原CO2中的应用[J]. 现代纺织技术, 2023, 31(3): 102-112.
[1]ZHOU A W, DOU Y B, ZHAO C, et al. A leaf-branch TiO2/Carbon@MOF composite for selective CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2020, 264: 118519. [2]QI K Z, CHENG B, YU J G, et al. A review on TiO2-based Z-scheme photocatalysts[J]. Chinese Journal of Catalysis, 2017, 38(12): 1936-1955. [3]ZHANG J Y, XIAO G C, XIAO F X, et al. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review[J]. Materials Chemistry Frontiers, 2017, 1(2): 231-250. [4]张兆国. 高光催化效能二氧化钛材料的性能优化研究[D]. 杭州: 浙江大学, 2016. ZHANG Zhaoguo. Study on Performance Optimization of Titanium Dioxide with High Photocatalytic Efficiency[D]. Hangzhou: Zhejiang University, 2016. [5]SHEHZAD N, TAHIR M, JOHARI K, et al. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency[J]. Journal of CO2 Utilization, 2018, 26: 98-122. [6]FU J W, JIANG K X, QIU X Q, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243. [7]BUZZETTI L, CRISENZA G E M, MELCHIORRE P. Mechanistic studies in photocatalysis[J]. Angewandte Chemie International Edition,, 2019, 58(12): 3730-3747. [8]WANG W, YANG R X, LI T, et al. Advances in recyclable and superior photocatalytic fibers: Material, construction, application and future perspective[J]. Composites Part B: Engineering, 2021, 205: 108512. [9]LIAS J, Mohd Fauzi M H F, SAHDAN M Z, et al. The effect of deposition time on the properties of titanium dioxide thin film prepared using CVD[J]. IOP Conference Series Materials Science and Engineering, 2020, 982(1): 012064. [10]HUANG C Y, GUO R T, PAN W G, et al. One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction[J]. Applied Surface Science, 2019, 464: 534-543. [11]FARZANEH A, JAVIDANI M, ESRAFILI M D, et al. Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations[J]. Journal of Physics and Chemistry of Solids,2022, 161: 110404. [12]PRAKASH J, SAMRITI, KUMAR A, et al. Novel rare earth metal-doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications[J]. Materials Today Sustainability, 2021, 13: 100066. [13]MAZINANI A, RASTIN H, NINE M J, et al. Comparative antibacterial activity of 2D materials coated on porous-titania[J]. Journal of Materials Chemistry B, 2021, 9(32): 6412-6424. [14]HEGDE S, MALIK H, CARLSON K, et al. Detecting benzene vapor via a low-cost nanostructured TiO2 sensor[J]. IEEE Sensors Journal, 2021, 21(12): 13828-13836. [15]LIANG S Z, WANG X Y, CHENG Y J, et al. Anatase titanium dioxide as rechargeable ion battery electrode-A chronological review[J]. Energy Storage Materials, 2022, 45: 201-264. [16]DARBANDI M, SHAABANI B, SCHNEIDER J, et al. TiO2 nanoparticles with superior hydrogen evolution and pollutant degradation performance[J]. International Journal of Hydrogen Energy, 2019, 44(44): 24162-24173. [17]CHEN D J, CHENG Y L, ZHOU N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. Journal of Cleaner Production, 2020, 268: 121725. [18]LI Z L, LI Z Q, ZUO C L, et al. Application of nanostructured TiO2 in UV photodetectors: A review[J]. Advanced Materials, 2022, 34(28): 2109083. [19]Yamakata A, Vequizo J J M. Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: A review[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 234-243. [20]李玉娟. 金红石型结构氧化物的高压相变[D]. 北京: 北京大学, 2006. LI Yujuan. High-pressure Structural Phase Transitions of Rutile-type Oxides[D]. Beijing: Peking University, 2006. [21]FU J W, CAO S W, YU J G, et al. Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment[J]. Dalton Transactions, 2014, 43(24): 9158-9165. [22]邹云玲. 基于板钛矿型TiO2的纳米光催化剂的制备及其光催化性能研究[D]. 天津: 天津大学, 2016. ZOU Yunling. Preparation and Photocatalytic Properties of Brookite TiO2 Based Nano-structured Materials[D]. Tianjin: Tianjin University, 2016. [23]ZHANG H Z, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3481-3487. [24]RELI M, KOBIELUSZ M, MATĚJOVÁ L, et al. TiO2 processed by pressurized hot solvents as a novel photocatalyst for photocatalytic reduction of carbon dioxide[J]. Applied Surface Science, 2017, 391: 282-287. [25]WANG P Q, BAI Y, LIU J Y, et al. One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels[J]. Catalysis Communications, 2012, 29: 185-188. [26]ZHANG J F, FU J W, CHEN S F, et al. 1D carbon nanofibers@TiO2 core-shell nanocomposites with enhanced photocatalytic activity toward CO2 reduction[J]. Journal of Alloys and Compounds, 2018, 746: 168-176. [27]WANG X Y, ZHANG Z G, HUANG Z F, et al. Electrospun PVDF nanofibers decorated with graphene and titania for improved visible light photocatalytic methanation of CO2[J]. Plasmonics, 2020, 15(3): 717-725. [28]LEI Z, XIONG Z, WANG Y C, et al. Photocatalytic reduction of CO2 over facet engineered TiO2 nanocrystals supported by carbon nanofibers under simulated sunlight irradiation[J]. Catalysis Communications, 2018, 108: 27-32. [29]OLA O, MAROTO-VALER M, LIU D, et al.Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation[J]. Applied Catalysis B: Environmental, 2012, 126: 172-179. [30]ROSALES M, ZOLTAN T, YADAROLA C, et al. The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity[J]. Journal of Molecular Liquids, 2019, 281: 59-69. [31]SOM I, ROY M. Recent development on titania-based nanomaterial for photocatalytic CO2 reduction: A review[J]. Journal of Alloys and Compounds, 2022, 918: 165533. [32] KANG S, KHAN H, LEE C S. CO2 selectivity of flower-like MoS2 grown on TiO2 nanofibers coated with acetic acid-treated graphitic carbon nitride[J]. Solar Energy Materials and Solar Cells, 2021, 221: 110890. [33]SUN Y Y, ZONG Z M ,LI Z K, et al. Seed-assisted thermal growth of one-dimensional TiO2 nanomaterials on carbon fibers[J]. Ceramics International, 2017, 43(3): 3171-3176. [34]YANG Y L, CHEN H J, ZOU X X, et al. Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24845-24854. [35]WANG X X, NI Q, ZENG D W, et al. Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene[J]. Applied Surface Science, 2016, 389: 165-172. [36]XU X T, ZHANG W Z, LI Y Y, et al. Preparation and characterization of anatase titanium dioxide fibre by electrospinning[J]. Bulletin of Materials Science, 2022, 45: 127. [37]XU F Y, ZHANG J J, ZHU B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 230: 194-202. [38] XU F Y, MENG K, CHENG B, et al.Enhanced photocatalytic activity and selectivity for CO2 reduction over a TiO2 nanofibre mat using Ag and MgO as Bi-cocatalyst[J]. ChemCatChem, 2019, 11(1): 465-472. [39]KANG S M, HWANG J. rGO-wrapped Ag-doped TiO2 nanofibers for photocatalytic CO2 reduction under visible light[J]. Journal of Cleaner Production, 2022, 374(26): 134022. [40] XU F Y, MENG K, ZHU B C, et al. Graphdiyne: A new photocatalytic CO2 reduction cocatalyst[J]. Advanced Functional Materials, 2019, 29(43): 1904256. [41]LIN T H, WU M C, CHIANG K P, et al. Unveiling the surface precipitation effect of Ag ions in Ag-doped TiO2 nanofibers synthesized by one-step hydrothermal method for photocatalytic hydrogen production[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120: 291-299. [42]CRAKE A, CHRISTOFORIDIS K C, GREGG A, et al. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer[J]. Small, 2019, 15(11): 1805473. [43]YANG D J, LIU H W, ZHENG Z F, et al. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals[J]. Journal of the American Chemical Society, 2009, 131(49): 17885-17893. [44]XIONG C R, BALKUS K J. Fabrication of TiO2 nanofibers from a mesoporous silica film[J]. Chemistry of Materials, 2005, 17(20): 5136-5140. [45]柯银环, 曾敏, 姜宏, 等. N掺杂TiO2纳米纤维高可见光催化CO2合成甲醇[J]. 无机材料学报, 2018, 33(8): 839-844. KE Yinhuan, ZENG Min, JIANG Hong, et al. Photocatalytic reduction of carbon dioxide to methanol over N-doped TiO2 nanofibers under visible irradiation[J]. Journal of Inorganic Materials, 2018, 33(8): 839-844. [46]谈恒, 肖洒, 姚淑荣, 等. CuO/TiO2纳米纤维可见光催化CO2合成甲醇[J]. 精细化工, 2019, 36(6): 1210-1216. TAN Heng, XIAO Sa, YAO Shurong, et al. Visible light driven reduction of CO2 to methanol over CuO/TiO2 nanofibers[J]. Fine Chemicals, 2019, 36(6): 1210-1216. [47]文曼, 任贝贝, 叶祥志, 等. CuO-SiO2气凝胶@TiO2纳米纤维无牺牲剂光催化还原CO2 [J]. 精细化工, 2021, 38(5): 981-987. WEN Man, REN Beibei, YE Xiangzhi, et al. CuO-SiO2 aerogel@TiO2 nanofibers photocatalyzing reduction of CO2 without sacrificial agent[J]. Fine Chemicals, 2021, 38(5): 981-987. [48]CAMARILLO R, RIZALDOS D, JIMÉNEZ C, et al. Enhancing the photocatalytic reduction of CO2 with undoped and Cu-doped TiO2 nanofibers synthesized in supercritical medium[J]. The Journal of Supercritical Fluids, 2019, 147: 70-80. [49]LIM J H, CHOI J. Titanium oxide nanowires originating from anodically grown nanotubes: The bamboo-splitting model[J]. Small (Weinheim an Der Bergstrasse, Germany), 2007, 3(9): 1504-1507. [50]TAVANGAR A, TAN B, VENKATAKRISHNAN K. Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation[J]. Acta Biomaterialia, 2011, 7(6): 2726-2732. [51]WANG Y O, SILVERI F, Bayazit M K, et al. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting[J]. Advanced Energy Materials, 2018, 8(24): 1801084. [52]JIANG X Y, HUANG J D, BI Z H, et al. Plasmonic active ′′hot spots′′-confined photocatalytic CO2 reduction with high selectivity for CH4 production[J]. Advanced Materials, 2022, 34(14): 2109330. [53]AMBROŽOVÁ N, RELI M, ŠIHOR M, et al. Copper and platinum doped titania for photocatalytic reduction of carbon dioxide[J]. Applied Surface Science, 2018, 430: 475-487. [54]ZHANG Z Y, WANG Z, CAO S W, et al. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion[J]. The Journal of Physical Chemistry C, 2013, 117(49): 25939-25947. [55]LIU J J, ZHANG L Y, FAN J J, et al. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres[J]. Sensors and Actuators B Chemical, 2021, 331: 129425. [56]COMPAGNONI M, VILLA A, BAHDORI E, et al. Surface probing by spectroscopy on titania-supported gold nanoparticles for a photoreductive application[J]. Catalysts, 2018, 8(12): 623. [57]YANG S S, RAO D W, YE J J, et al. Mechanism of transition metal cluster catalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3484-3492. [58]KANG S, KHAN H, LEE C H, et al. Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2021, 420: 130496. [59]BJELAJAC A, PETROVIĆ R, POPOVIĆ M, et al. Doping of TiO2 nanotubes with nitrogen by annealing in ammonia for visible light activation: Influence of pre- and post-annealing in air[J]. Thin Solid Films, 2019, 692: 137598. [60]PENG H, GUO R T, LIN H. Photocatalytic reduction of CO2 over Sm-doped TiO2 nanoparticles[J]. Journal of Rare Earths, 2020, 38(12): 1297-1304. [61]CHEN X, HUANG Y, LI Y H, et al. Acidification of La loaded TiO2 for photocatalytic conversion of CO2[J]. Materials Letters, 2021, 293: 129709. [62]PRAKASH J, SAMRITI, KUMAR A, et al. Novel rare earth metal-doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications[J]. Materials Today Sustainability, 2021, 13: 100066. [63]MEZZAT F, ZAARI H, EI KENZ A E, et al. Effect of metal and non metal doping of TiO2 on photocatalytic activities: ab initio calculations[J]. Optical and Quantum Electronics, 2021, 53(2):86. [64]董元, 陈长城. 静电纺丝方法制备氮掺杂二氧化钛纳米纤维[J]. 西安邮电大学学报, 2018, 23(3): 87-91. DONG Yuan, CHEN Changcheng. Nitrogen-doped titaniun dioxide nanofibres fabricated by electrospinning[J]. Journal of Xi’an University of Posts and Telecommunications, 2018, 23(3): 87-91. [65]SEREDYCH M, JAGIELLO J, BANDOSZ T J. Complexity of CO2 adsorption on nanoporous sulfur-doped carbons: Is surface chemistry an important factor?[J]. Carbon, 2014, 74: 207-217. [66]OLOWOYO J O, KUMAR M, JAIN S L, et al. Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: Significance of sulfur doping[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17682-17695. |
[1] | LI Yong a, b, ZHOU Weitaoa, b, c, HAN Lua, c, LI Yiming a, DU Shanb, d. Fabrication and heat insulation performance of ultra-thin and transparent aramid nanofiber aerogel films [J]. Advanced Textile Technology, 2024, 32(9): 56-64. |
[2] | SU Qi, GAO Yan, GAO Xiaoping, YANG Bochen. Effect of ammonium persulfate concentration on electromagnetic shielding properties of PAN/PANI nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(5): 1-8. |
[3] | LI Jinchao, MEI Shuo, DU Yujia, MA Biao, LI Hong. Preparation and performance of polyurethane nanofiber membrane for air filtration#br# [J]. Advanced Textile Technology, 2024, 32(5): 18-22. |
[4] | ZHANG Jiapenga, WANG Yana, b, YAO Jumingb, c, JIRI Militky, DANA Kremenakova, ZHU Guochenga, b, . Preparation and properties of CA/PVA nanofibrous membrane with high water resistance [J]. Advanced Textile Technology, 2024, 32(2): 96-104. |
[5] | WANG Qi, CHEN Mingxing, ZHANG Wei WU Yanjie, WANG Xinya. Research progress in electrospun Janus nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 1-10. |
[6] | GE Yafenga, WANG Yan, XU Chuqia, JIRI Militky, DANA Kremenakova, ZHU Guocheng, . Preparation and performance of highly hydrophilic chitosan nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 11-19. |
[7] | ZHANG Yanan, XU Bingjie, LI Mengwei, REN Haotian, GAO Yujie, WANG Yijia, WU Jindan, . Preparation and antibacterial properties of loaded aggregation-induced emission photosensitizers nanofiber membranes [J]. Advanced Textile Technology, 2024, 32(10): 31-39. |
[8] | WANG Cheng, DONG Xinxin, ZHANG Hua, ZHENG Min. Preparation of Bifunctional Au@Cu2O binary heterojunctions with photothermal effect and photocatalysis for clean water generation [J]. Advanced Textile Technology, 2023, 31(6): 43-50. |
[9] | FANG Xuesonga, XIONG Jieb, SONG Lixinb. Preparation of C@MnO2 composite nanofiber cathode and its application in Zn2+ batteries [J]. Advanced Textile Technology, 2023, 31(5): 41-48. |
[10] | CHEN Qinqin, XU Zhaomei, MA Tingfang, FU Feiya, LIU Xiangdong. Preparation and properties of bacterial cellulose nanofiber membranes and fibers [J]. Advanced Textile Technology, 2023, 31(5): 66-75. |
[11] | LIU Yanbo, ZHANG Tianyi, PANG Rongrong, CHEN Zhijun, YANG Bo. Preparation and performance of laminated composite acid-proof fabrics [J]. Advanced Textile Technology, 2023, 31(5): 240-248. |
[12] | CHENG Wei, ZHANG Jing, XU Chengshu, REN Yan. Preparation of wool keratin and polyvinyl alcohol composite fiber membrane and the exploration as surgical-mask filtration materials [J]. Advanced Textile Technology, 2023, 31(4): 74-83. |
[13] | Xiong Tiantian, Li Lijun, Zou Hantao, Nie Fushan. Preparation and properties of AgNWs-PVDF air-jet- electrospinning microfiber [J]. Advanced Textile Technology, 2023, 31(3): 92-101. |
[14] | YANG Haizhen, WEI Sujie, MA Chuang, ZHOU Zelin, WANG Mengjia, FU Yuan. Research progress of cellulose electrospinning and its derived nanofibers in biomedicine applications [J]. Advanced Textile Technology, 2023, 31(3): 212-224. |
[15] | GE Yeqian, XU Jiaqi, CAO Qi, ZHANG Xiaxia, WANG Yifeng, XU Fujun. Research on the preparation and the photocatalytic dye degradation performance of TiO2 nanofiber [J]. Advanced Textile Technology, 2023, 31(2): 197-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||