Advanced Textile Technology ›› 2024, Vol. 32 ›› Issue (6): 129-141.
Previous Articles Next Articles
Online:
2024-06-10
Published:
2024-06-17
CLC Number:
LI Denggao a, LIU Chengxiaa, b. Application of finite element analysis technology in the field of fabric mechanical properties[J]. Advanced Textile Technology, 2024, 32(6): 129-141.
李登高, 刘成霞. 有限元分析技术在织物力学性能领域的应用[J]. 现代纺织技术, 2024, 32(6): 129-141.
[1] LOMOV S V, IVANOV D S, VERPOEST I, et al. Meso-FE modelling of textile composites: Road map, data flow and algorithms[J]. Composites Science and Technology, 2007, 67(9): 1870-1891. [2] LLOYD D W. The analysis of complex fabric deformation[J]. NATO advanced study institute, 1979: 311-342. [3] IMAKA H, OKABE H, NISHIKAWA S, et al. A method of estimating the three-dimensional shapes of garments by use of triangular finite elements[J]. Bulletin of Research Institute for Polymers and Textiles, 1984: 73-80. [4] ZHAO Y F, WONG T N, TAN S T, et al. A model for simulating flexible surfaces of cloth objects[J]. Computers & Structures, 1997, 63(1): 133-147. [5] TAN S T, WONG T N, ZHAO Y F, et al. A constrained finite element method for modeling cloth deformation[J]. The Visual Computer, 1999, 15(2): 90-99. [6] JACQUES S, DE B I, VAN P W. Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites[J]. Composites Science and Technology, 2014, 92: 41-54. [7] WIJAYA W, KELLYP A, BICKERTON S. A novel methodology to construct periodic multi-layer 2D woven unit cells with random nesting configurations directly from μCT- scans[J]. Composites Science and Technology, 2020, 193: 108125. [8] SEVENOIS R D B, GAROZ D, GILABERT F A, et al. Avoiding interpenetrations and the importance of nesting in analytic geometry construction for Representative Unit Cells of woven composite laminates[J]. Composites Science and Technology, 2016, 136: 119-132. [9] BARBERO E J, DAMIANI T M, TROVILLION J. Micromechanics of fabric reinforced composites with periodic microstructure[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2489-2504. [10] BARBERO E J, TROVILLION J, MAYUGO J A, et al. Finite element modeling of plain weave fabrics from photomicrograph measurements[J]. Composite Structures, 2006, 73(1): 41-52. [11] 杨斌, 王继辉, 冯雨薇, 等. 织物增强复合材料Micro-CT辅助数值仿真技术研究进展[J]. 复合材料学报, 2023, 40(10): 5466-5485. YANG Bin, WANG Jihui, FENG Yuwei, et al. Advances in Micro-CT aided numerical simulation of fabric-reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5466-5485. [12] GREEN S D, LONG A C, EL S B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756. [13] KOWALCZYK P. Enhanced geometric model for numerical microstructure analysis of plain-weave fabric-reinforced composite[J]. Advanced Composite Materials, 2015, 24(5): 411-429. [14] HIVET G, BOISSE P. Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis[J]. Finite Elements in Analysis and Design, 2005, 42(1): 25-49. [15] ADUMITROAIE A, BARBERO E J. Beyond plain weave fabrics–I. Geometrical model[J]. Composite Structures, 2011, 93(5): 1424-1432. [16] STIG F, HALLSTRÖM S. Spatial modelling of 3D-woven textiles[J]. Composite Structures, 2012, 94(5): 1495-1502. [17] WADEKAR P, PERUMAL V, DION G, et al. An optimized yarn-level geometric model for Finite Element Analysis of weft-knitted fabrics[J]. Computer Aided Geometric Design, 2020, 80: 101883. [18] PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites part A: Applied Science and manufacturing, 2005, 36(6): 859-874. [19] CHEN B, COLMARS J, NAOUAR N, et al. A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106558. [20] YANG H, YAO X F, YAN H, et al. Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites[J]. Composite Structures, 2018, 187: 116-121. [21] YANG H, YAO X F, KE Y C, et al. Constitutive behaviors and mechanical characterizations of fabric reinforced rubber composites[J]. Composite Structures, 2016, 152: 117-123. [22] XU X, YAO X, DONG Y, et al. Mechanical behaviors of non-orthogonal fabric rubber seal[J]. Composite Structures, 2021, 259: 113453. [23] PAZMINO J, MATHIEU S, CARVELLI V, et al. Numerical modelling of forming of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 207-218. [24] YAO Y, HUANG X, PENG X, et al. An anisotropic hyperelastic constitutive model for plain weave fabric considering biaxial tension coupling[J]. Textile Research Journal, 2019, 89(3): 434-444. [25] CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 1037-1053. [26] DENIS Y, HAMILA N, ITSKOV M, et al. A dissipative model for deep-drawing simulations: Elastic springback prediction and incremental forming strategies[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106547. [27] DENIS Y, GUZMAN-MALDONADO E, HAMILA N, et al. A dissipative constitutive model for woven composite fabric under large strain[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 165-179. [28] WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites science and technology, 2001, 61(2): 311-319. [29] WANG Y, MIAO Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5): 552-560. [30] THOMPSON A J, EL SAID B, BELNOUE J P H, et al. Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scale[J]. Composites Science and Technology, 2018, 168: 104-110. [31] LIU C, XIE J, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures, 2019, 230: 111552. [32] WU L, ZHAO F, XIE J, et al. The deformation behaviors and mechanism of weft knitted fabric based on micro-scale virtual fiber model[J]. International Journal of Mechanical Sciences, 2020, 187: 105929. [33] MAZUMDER A, WANG Y, YEN C F. A structured method to generate conformal FE mesh for realistic textile composite micro-geometry[J]. Composite Structures, 2020, 239: 112032. [34] YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679. [35] DAELEMANS L, TOMME B, CAGLAR B, et al. Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validation[J]. Composites Science and Technology, 2021, 207: 108706. [36] NILAKANTAN G, KEEFE M, WETZEL E D, et al. Effect of statistical yarn tensile strength on the probabilistic impact response of woven fabrics[J]. Composites Science and Technology, 2012, 72(2): 320-329. [37] NGUYEN Q T, VIDAL-SALLÉ E, BOISSE P, et al. Mesoscopic scale analyses of textile composite reinforcement compaction[J]. Composites Part B: Engineering, 2013, 44(1): 231-241. [38] YANG Y, LIU Y, XUE S, et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles[J]. Composite Structures, 2021, 267: 113856. [39] HAMILA N, BOISSE P, SABOURIN F, et al. A semi‐discrete shell finite element for textile composite reinforcement forming simulation[J]. International Journal for numerical methods in engineering, 2009, 79(12): 1443-1466. [40] ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 612-622. [41] BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692. [42] GUAN W, DAI Y, LI W, et al. An improved semi-discrete approach for simulation of 2.5D woven fabric preforming[J]. Composite Structures, 2022, 282: 115093. [43] WANG P, LEGRAND X, BOISSE P, et al. Experimental and numerical analyses of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface 3D weaving[J]. Composites Part B: Engineering, 2015, 78: 26-34. [44] DE LUYCKER E, MORESTIN F, BOISSE P, et al. Simulation of 3D interlock composite preforming[J]. Composite Structures, 2009, 88(4): 615-623. [45] IWATA A, INOUE T, NAOUAR N, et al. Coupled meso-macro simulation of woven fabric local deformation during draping[J]. Composites Part A: Applied Science and Manufacturing, 2019, 118: 267-280. [46] 喻高远, 李俊杰, 楼云锋, 等. 结构动力学有限元混合分层并行计算方法[J]. 工程力学, 2023, 40: 1-8. YU Gaoyuan, LI Junjie, LOU Yunfeng, et al. Hybrid hierarchical parallel algorithms for structure dynamic analysis[J]. Engineering Mechanics, 2023, 40: 1-8. [47] DINH T D, WEEGER O, KAIJIMA S, et al. Prediction of mechanical properties of knitted fabrics under tensile and shear loading: Mesoscale analysis using representative unit cells and its validation[J]. Composites Part B: Engineering, 2018, 148: 81-92. [48] QUYEN N T, QUOC N T, TRU N D, et al. An alpha finite element method for linear static and buckling analysis of textile-like sheet materials[J]. Solid State Phenomena, 2022, 6563: 211-217. [49] Onyibo E C, Safaei B. Application of finite element analysis to honeycomb sandwich structures: a review[J]. Reports in Mechanical Engineering, 2022, 3(1): 192-209. [50] 顾伯洪.非织造布拉伸性能有限元模拟计算[J].纺织学报,1998,19(3):140-142. GU Bohong. Finite element simulation calculation of nonwovens tensile properties[J]. Journal of Textile Research, 1998, 19(3): 140-142. [51] DAELEMANS L, FAES J, ALLAOUI S, et al. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[J]. Composites Science and Technology, 2016, 137: 177-187. [52] 程建芳, 肖露, 柴晓明, 等. 有限元分析法研究Kevlar129纱线及织物的拉伸性能[J]. 浙江理工大学学报, 2013, 30(5): 649-653. CHENG Jianfang, XIAO Lu, CHAI Xiaoming, et al. Study on tensile property of kevlar129 yarn and fabric with finite element analysis method[J]. Journal of Zhejiang Sci-Tech University, 2013, 30(5): 649-653. [53] 李瑛慧, 谢春萍, 刘新金. 三原组织拉伸力学性能有限元仿真[J]. 纺织学报, 2017, 38(11): 41-47. LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three-elementary weave fabric[J]. Journal of Textile Research, 2017, 38(11): 41-47. [54] 李瑛慧, 谢春萍, 刘新金, 等. 真丝和涤纶仿真丝织物的拉伸性能有限元仿真[J]. 丝绸, 2018, 55(3): 27-31. LI Yinghui, XIE Chunping, LIU Xinjin, et al. Finite element simulation of tensile mechanical properties of silk fabrics and polyester silk-like fabrics[J]. Journal of Silk, 2018, 55(3): 27-31. [55] 刘倩楠, 张涵, 刘新金, 等. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(4): 44-50. LIU Qiannan, ZHANG Han, LIU Xinjin, et al. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2019, 40(4): 44-50. [56] 刘倩楠, 刘新金. 采用ABAQUS的粘胶机织物拉伸力学性能仿真[J]. 纺织学报, 2018, 39(9): 39-43. LIU Qiannan, LIU Xinjin. Tensile mechanical properties simulation of viscose woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2018, 39(9): 39-43. [57] 刘倩楠, 刘新金, 苏旭中. 基于有限元方法的不同集聚纱织物拉伸力学性能分析[J].丝绸, 2019, 56(4): 24-29. LIU Qiannan, LIU Xinjin, SU Xuzhong. Tensile mechanical properties analysis of fabrics with different aggregate yarns based on finite element method[J]. Journal of Silk, 2019,56(4): 24-29. [58] 孙一万, 张学文, 蔡利海, 等. 增强机织物拉伸过程中的应力集中有限元分析[J].复合材料科学与工程, 2021(12): 25-33. SUN Yiwan, ZHANG Xuewen, CAI Lihai, et al. Finite element analysis of stress concentration in tensile process of reinforced woven fabric[J]. Composites Science and Engineering, 2021(12): 25-33. [59] 孙亚博, 李立军, 马崇启, 等. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J].纺织学报, 2021, 42(2): 107-112. SUN Yabo, LI Lijun, MA Chongqi, et al. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS[J]. Journal of Textile Research,2021, 42(2): 107-112. [60] HOU Y, JIANG L, SUN B, et al. Strain rate effects of tensile behaviors of 3-D orthogonal woven fabric: Experimental and finite element analyses[J]. Textile Research Journal, 2013, 83(4): 337- 354. [61] SU X, LIU X. Dynamic tensile process of blended fabric using finite element method[J]. International Journal of Clothing Science and Technology, 2020, 32(5): 707-724. [62] GHORBANI E, HASANI H, JAFARI N R. Finite element modelling the mechanical performance of pressure garments produced from elastic weft knitted fabrics[J]. The Journal of The Textile Institute, 2019, 110(5): 724-731. [63] LIU G, HUANG K, ZHONG Y, et al. Investigation on the off-axis tensile failure behaviors of 3D woven composites through a coupled numerical-experimental approach[J]. Thin-Walled Structures, 2023, 192: 111176. [64] CHOCRON S, FIGUEROA E, KING N, et al. Modeling and validation of full fabric targets under ballistic impact[J]. Composites Science and Technology, 2010, 70(13): 2012-2022. [65] DAS S, JAGAN S, SHAW A, et al. Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact[J]. Composite Structures, 2015, 120: 129-140. [66] MEYER C S, O'BRIEN D J, HAQUE B Z G, et al. Mesoscale modeling of ballistic impact experiments on a single layer of plain weave composite [J]. Composites Part B: Engineering, 2022, 235: 109-753. [67] MAMIVAND M, LIAGHAT G H. A model for ballistic impact on multi-layer fabric targets[J]. International Journal of Impact Engineering, 2010, 37(7): 806-812. [68] WANG Y, MIAO Y, HUANG L, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78. [69] PALTA E, FANG H. On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics[J]. Composite Structures, 2019, 207: 488-508. [70] 武鲜艳, 申屠宝卿, 马倩, 等. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J].纺织学报, 2020, 41(8): 32-38. WU Xianyan, SHENTU Baoqing, MA Qian, et al. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile[J]. Journal of Textile Research, 2020, 41(8): 32-38. [71] WEI Q, YANG D, GU B, et al. Numerical and experimental investigation on 3D angle interlock woven fabric under ballistic impact[J]. Composite Structures, 2021, 266: 113778. [72] DEWANGAN M K, PANIGRAHI S K. Finite element analysis of projectile nose shapes in ballistic perforation of 2D plain woven Kevlar/epoxy composites using multi-scale modelling[J]. Journal of Industrial Textiles, 2022, 51(3): 4200-4230. [73] 马倩, 王可. 机织物撕裂破坏的有限元模拟[J]. 合成纤维, 2013, 42(5): 10-13. MA Qian, WANG Ke. Finite element modeling of woven fabric tearing damage[J]. Synthetic Fiber in China, 2013 (5): 10-13. [74] WANG P, SUN B, GU B. Comparisons of trapezoid tearing behaviors of uncoated and coated woven fabrics from experimental and finite element analysis[J]. International Journal of Damage Mechanics, 2013, 22(4): 464-489. [75] WANG P, SUN B Z. Finite Element Analysis and Calculation of Tongue-Tearing Process of Woven Fabric[J]. Advanced Materials Research, 2011, 181: 443-448. [76] ZHOU H, JIANG W, ZHOU B I, et al. Numerical simulation and experimental validation of triaxial woven fabric and its reinforced rubber composites on tear damage[J]. Materials Research Express, 2021, 8(8): 085301. [77] SENNER T, KREISSL S, MERKLEIN M, et al. Bending of unidirectional non-crimp-fabrics: experimental characterization, constitutive modeling and application in finite element simulation[J]. Production Engineering, 2015, 9: 1-10. [78] 靳欢欢, 杜赵群. 平纹织物三点梁弯曲有限元模拟与分析[J]. 东华大学学报(自然科学版), 2016, 42(03): 344-349. JIN Huanhuan, DU Zhaoqun. Three-point bending simulation and analysis of plain woven fabric by finite element method[J]. Journal of Donghua University(Natural Science), 2016, 42(3): 344-349. [79] 杨留义, 谭惠丰, 曹宗胜. 基于单胞有限元模型的织物复合材料弯曲刚度预报[J]. 复合材料学报, 2018, 35(5): 1192-1202. YANG Liuyi, TAN Huifeng, CAO Zongsheng. A unit-cell model for predicting bending stiffnesses of plain woven composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1192-1202. [80] ZHONG Y, TRAN L Q N, KUREEMUN U, et al. Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis[J]. Journal of Materials Science, 2017, 52: 4957-4967. [81] 马莹, 何田田, 陈翔, 等. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(7): 59-66. MA Ying, HE Tiantian, CHEN Xiang, et al. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach[J]. Journal of Textile Research, 2020, 41(7): 59-66. [82] DRACH A, DRACH B, TSUKROV I. Processing of fiber architecture data for finite element modeling of 3D woven composites[J]. Advances in Engineering Software, 2014, 72: 18-27. |
[1] | Fuxing dong , Li yu , Xuefeng gu, Lianying zhao. Appearance simulation of section dyed yarn knitted fabrics based on b-spline coil model [J]. Advanced Textile Technology, 2024, 32(7): 66-73. |
[2] | Zhang caiqian, Meng Shaoni, Li Junrong. The influence of air flow on the properties of cotton tight fabrics [J]. Advanced Textile Technology, 2024, 32(7): 74-79. |
[3] | Luo Hao, Feng Hao, WU Wenyunjie. Effects of Differences in Cotton Fabric Structures on Moisture-absorption and Quick-drying Performance [J]. Advanced Textile Technology, 2024, 32(7): 80-85. |
[4] | XUAN Haifeng, ZHANG Rongrong , LIN Feng , LÜ Rong, LI Jianmin, YUANYAN Haohan. Design of multi-head computer embroidery machines with a statically indeterminate beam [J]. Advanced Textile Technology, 2024, 32(6): 70-79. |
[5] | WANG Xuhuia, JIANG Wenbina, WANG Jinfenga, b. Finite element analysis of mechanical properties of weft plain knitted fabrics [J]. Advanced Textile Technology, 2024, 32(6): 80-88. |
[6] | JIN Wenzhe, LÜ Wentao, GUO Qing, XU Yuzhen, YU Runze. Fabric image classification algorithm based on improved 3E-LDA [J]. Advanced Textile Technology, 2024, 32(6): 89-96. |
[7] | WANG Yong, a, b, QIAO Qifanb, WANG Zongqianb, LI Changlongb, WANG Wei, . Effect of pre-draft ratio of elastane filaments on the properties of yarns wrapped with cotton/spandex/stainless steel wires [J]. Advanced Textile Technology, 2024, 32(5): 32-40. |
[8] | LI Xin, SHAO Lingda, MING Lin, HE Rong, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Light transmission characteristics of interwoven decorative fabrics made of silk with hidden weft of different colors [J]. Advanced Textile Technology, 2024, 32(5): 51-57. |
[9] | XIAO Keying, CUI Siyi, LIN Shaowu, WANG Xueqin, . Simulation analysis of the influence of mechanical properties of fillers on cushion comfort [J]. Advanced Textile Technology, 2024, 32(4): 21-28. |
[10] | LIU Xiaohan, WANG Yuxuan, XIE Wen, ZHANG Hongxia. Performance of antibacterial clothing fabric with the composite functions of thermal-moisture comfort [J]. Advanced Textile Technology, 2024, 32(4): 52-59. |
[11] | JIANG Xina, LIU Chengxiaa, b. A multi-direction visual bending test method of fabrics based on 3D scanning [J]. Advanced Textile Technology, 2024, 32(4): 60-67. |
[12] | TIAN Yuan, DU Zhaoqun, ZHENG Dongming, ZOU Haochen. Development of fabric style and thermal-moisture comprehensive evaluation system [J]. Advanced Textile Technology, 2024, 32(4): 68-75. |
[13] | SONG Jixian, ZHANG Sijia, JIANG Hua. Effect of Pretreatment with Polar Solvent on Dyeing and Mechanical Property of Meta Aramid [J]. Advanced Textile Technology, 2024, 32(4): 76-83. |
[14] | TIAN Yuan, DU Zhaoqun, ZHENG Dongming, ZOU Haochen. Research progress of fabric friction performance test system [J]. Advanced Textile Technology, 2024, 32(4): 125-140. |
[15] | XIE Jialing, YANG Sheng, FU Feiya, MA Tingfang, XU Zhaomei, LIU Xiangdong. Study on silk fabrics modified with reactive deep eutectic solvents and their dyeing properties [J]. Advanced Textile Technology, 2024, 32(3): 61-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||