[1] LU Q, CHEN H, ZENG Y, et al. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring[J]. Nano Energy, 2022, 91: 106612.
[2] HU C, WANG F, CUI X, et al. Recent progress in textile-based triboelectric force sensors for wearable electronics[J]. Advanced Composites and Hybrid Materials, 2023, 6(2): 70.
[3] RAYEGANI A, SABERIAN M, DELSHAD Z, et al. Recent advances in self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators[J]. Biosensors, Multidisciplinary Digital Publishing Institute, 2023, 13(1): 37.
[4] DAI J, LI L, SHI B, et al. Recent progress of self-powered respiration monitoring systems[J]. Biosensors and Bioelectronics, 2021, 194: 113609.
[5] CHEN Q, AKRAM W, CAO Y, et al. Recent progress in the fabrication and processing of triboelectric yarns[J]. Carbon Neutralization, 2023, 2(1): 63–89.
[6] PUNEETHA P, MALLEM S P R, PARK S C, et al. Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor[J]. Nano Research, 2023, 16: 5541–5547.
[7] BUSOLO T, SZEWCZYK P K, NAIR M, et al. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16876–16886.
[8] LI Y, ZHANG Y, YI J, et al. Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring[J]. EcoMat, 2022, 4(4): e12191.
[9] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019, 10(1): 1427.
[10] WANG W, YU A, WANG Y, et al. Elastic kernmantle e-braids for high-impact sports monitoring[J]. Advanced Science,2022, 9(25): 1–11.
[11] YU A, PU X, WEN R, et al. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths[J]. ACS Nano, 2017, 11(12): 12764–12771.
[12] MAO Y, LI Y, XIE J, et al. Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer[J]. Nano Energy, 2021, 84: 105918.
[13] ZHANG D, YANG W, GONG W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals[J]. Advanced Materials, 2021, 33(26): 2100782.
[14] WU R, LIU S, LIN Z, et al. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system[J]. Advanced Energy Materials, 2022, 12(31): 1–11.
[15] NING C, CHENG R, JIANG Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811–2821.
[16] DONG K, DENG J, DING W, et al. Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing[J]. Advanced Energy Materials, 2018, 8(23): 1801114.
[17] MA L, WU R, PATIL A, et al. Acid and alkali-resistant textile triboelectric nanogenerator as a amart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments[J]. Advanced Functional Materials, 2021, 31(35): 2102963.
[18] SHAO J, WILLATZEN M, SHI Y, et al. 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators[J]. Nano Energy, 2019, 60: 630–640.
[19] WANG J, LI S, YI F, et al. Sustainably powering wearable electronics solely by biomechanical energy[J]. Nature Communications, 2016, 7(1): 12744.
[20] NIU S, WANG S, LIN L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & Environmental Science, 2013, 6(12): 3576–3583.
[21] 刘昕宇, 闫铮, 段放, 等. 基于Kanade-Lucas-Tomasi算法的人体体表呼吸运动追踪[J]. 激光与光电子学进展, 2020, 57(22): 58–66.
LIU Xinyu, YAN Zheng, YAN Fang et al. Tracking of human respiratory motion based on Kanade-Lucas-Tomasi algorithm[J]. Laser&Optoelectronics Progress, 2020, 57(22): 58–66.
[22] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare[J]. Advanced Materials, 2016, 28(22): 4338–4372.
[23] 范圣龙, 鲁子鹏, 黄祖博, 等. 基于温度传感器的可穿戴呼吸检测装置研究[J]. 传感器与微系统, 2023, 42(6): 66–69.
FAN Shenglong, LU Zipeng, HUANG Zubo et al. Research on wearable respiration detecting devices based on temperature sensor[J]. Transducer and Microsystem Technologies, 2023, 42(6): 66–69.
[24] ZI Y, NIU S, WANG J, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators[J]. Nature Communications, 2015, 6(1): 8376.
[25] 周灵琳, 王杰, 王中林. 摩擦纳米发电机表面电荷密度研究进展[J]. 科技导报, 2022, 40(17): 24–35.
ZHOU Linglin, WANG Jie, WANG Zhonglin. Advance of study on surface charge density of triboelectric nanogenerators[J]. Science & Technology Review, 2022, 40(17): 24–35.
[26] CHUNG C K, KE K H. High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices[J]. Applied Surface Science, 2020, 508: 145310.
[27] ZHANG C, ZHOU L, CHENG P, et al. Surface charge density of triboelectric nanogenerators: Theoretical boundary and optimization methodology[J]. Applied Materials Today, 2020, 18: 100496.
[28] 邓冉琦, 张莉. 通过腹部起伏测呼吸状态的检测方法研究[J]. 国外电子测量技术, 2022, 41(11): 30–36.
DENG Ranqi, ZHANG Li. Method for detecting respiratory status by abdominal rise and fall[J]. Foreign Electronic Measurement Technology, 2022, 41(11): 30–36.
|