Advanced Textile Technology ›› 2022, Vol. 30 ›› Issue (1): 178-184.DOI: 10.19398/j.att.202101013
• Apparel Engineering • Previous Articles Next Articles
LI Longfei1, SHAO Lingda1, LIN Ping2, ZHU Chengyan1, DING Yuanyuan2, TIAN Wei1()
Received:
2021-01-14
Online:
2022-01-10
Published:
2021-06-29
Contact:
TIAN Wei
李龙飞1, 邵灵达1, 林平2, 祝成炎1, 丁圆圆2, 田伟1()
通讯作者:
田伟
作者简介:
李龙飞(1994-),男,安徽亳州人,硕士研究生,主要从事过滤材料结构与性能方面的研究。
基金资助:
CLC Number:
LI Longfei, SHAO Lingda, LIN Ping, ZHU Chengyan, DING Yuanyuan, TIAN Wei. Structural analysis and performance of daily protective mask[J]. Advanced Textile Technology, 2022, 30(1): 178-184.
李龙飞, 邵灵达, 林平, 祝成炎, 丁圆圆, 田伟. 日常防护型口罩结构分析及性能研究[J]. 现代纺织技术, 2022, 30(1): 178-184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal.zjtextile.com.cn/EN/10.19398/j.att.202101013
口罩编号 | 内/过滤 /外层 | 组织 | 厚度/mm | 平方米质量 /(g·m-2) | 密度/(根·10cm-1) | 纤度/tex | ||
---|---|---|---|---|---|---|---|---|
经纱 | 纬纱 | 经纱 | 纬纱 | |||||
A | 内层 | 经平针 | 0.42 | 142.44 | 310(纵密) | 190(横密) | 7.30 | 7.30 |
过滤层 | — | 0.28 | 41.88 | — | — | — | — | |
外层 | 纬双反面 | 0.74 | 242.08 | 190(纵密) | 180(横密) | 12.60 | 12.60 | |
B | 内层 | 经平针 | 0.41 | 116.84 | 250(纵密) | 180(横密) | 6.70 | 6.70 |
过滤层 | — | 0.18 | 42.20 | — | — | — | — | |
外层 | 经平针 | 0.43 | 130.12 | 230(纵密) | 170(横密) | 10.30 | 10.30 | |
C | 内层 | — | 0.23 | 25.56 | — | — | — | — |
过滤层 | — | 0.14 | 25.32 | — | — | — | — | |
外层 | — | 0.17 | 29.16 | — | — | — | — | |
D | 内层 | — | 0.22 | 25.42 | — | — | — | — |
过滤层 | — | 0.15 | 26.15 | — | — | — | — | |
外层 | — | 0.16 | 28.56 | — | — | — | — | |
E | 内层 | 五枚缎纹 | 0.22 | 76.44 | 980 | 640 | 4.30 | 5.20 |
过滤层 | — | 0.36 | 30.68 | — | — | — | — | |
外层 | 五枚缎纹 | 0.22 | 75.76 | 940 | 620 | 3.20 | 5.10 | |
F | 内层 | 五枚缎纹 | 0.18 | 67.21 | 910 | 500 | 4.10 | 4.90 |
过滤层 | — | 0.18 | 40.24 | — | — | — | — | |
外层 | 五枚缎纹 | 0.16 | 58.52 | 900 | 480 | 3.10 | 4.90 | |
G | 内层 | 平纹 | 0.31 | 124.22 | 420 | 420 | 8.00 | 10.10 |
过滤层 | — | 0.17 | 25.48 | — | — | — | — | |
外层 | 二上二下斜纹 | 0.18 | 68.84 | 380 | 340 | 18.50 | 19.10 | |
H | 内层 | 平纹 | 0.21 | 82.08 | 450 | 340 | 8.90 | 10.90 |
过滤层 | — | 0.24 | 66.81 | — | — | — | — | |
外层 | 五枚缎纹 | 0.23 | 95.84 | 580 | 380 | 7.40 | 8.80 |
Tab.1 Basic structural parameters of mask samples
口罩编号 | 内/过滤 /外层 | 组织 | 厚度/mm | 平方米质量 /(g·m-2) | 密度/(根·10cm-1) | 纤度/tex | ||
---|---|---|---|---|---|---|---|---|
经纱 | 纬纱 | 经纱 | 纬纱 | |||||
A | 内层 | 经平针 | 0.42 | 142.44 | 310(纵密) | 190(横密) | 7.30 | 7.30 |
过滤层 | — | 0.28 | 41.88 | — | — | — | — | |
外层 | 纬双反面 | 0.74 | 242.08 | 190(纵密) | 180(横密) | 12.60 | 12.60 | |
B | 内层 | 经平针 | 0.41 | 116.84 | 250(纵密) | 180(横密) | 6.70 | 6.70 |
过滤层 | — | 0.18 | 42.20 | — | — | — | — | |
外层 | 经平针 | 0.43 | 130.12 | 230(纵密) | 170(横密) | 10.30 | 10.30 | |
C | 内层 | — | 0.23 | 25.56 | — | — | — | — |
过滤层 | — | 0.14 | 25.32 | — | — | — | — | |
外层 | — | 0.17 | 29.16 | — | — | — | — | |
D | 内层 | — | 0.22 | 25.42 | — | — | — | — |
过滤层 | — | 0.15 | 26.15 | — | — | — | — | |
外层 | — | 0.16 | 28.56 | — | — | — | — | |
E | 内层 | 五枚缎纹 | 0.22 | 76.44 | 980 | 640 | 4.30 | 5.20 |
过滤层 | — | 0.36 | 30.68 | — | — | — | — | |
外层 | 五枚缎纹 | 0.22 | 75.76 | 940 | 620 | 3.20 | 5.10 | |
F | 内层 | 五枚缎纹 | 0.18 | 67.21 | 910 | 500 | 4.10 | 4.90 |
过滤层 | — | 0.18 | 40.24 | — | — | — | — | |
外层 | 五枚缎纹 | 0.16 | 58.52 | 900 | 480 | 3.10 | 4.90 | |
G | 内层 | 平纹 | 0.31 | 124.22 | 420 | 420 | 8.00 | 10.10 |
过滤层 | — | 0.17 | 25.48 | — | — | — | — | |
外层 | 二上二下斜纹 | 0.18 | 68.84 | 380 | 340 | 18.50 | 19.10 | |
H | 内层 | 平纹 | 0.21 | 82.08 | 450 | 340 | 8.90 | 10.90 |
过滤层 | — | 0.24 | 66.81 | — | — | — | — | |
外层 | 五枚缎纹 | 0.23 | 95.84 | 580 | 380 | 7.40 | 8.80 |
编号 | 纤维直径 x1/μm | 平均孔径 x2/μm | 孔隙率 x3/% | 过滤效 率y/% |
---|---|---|---|---|
1 | 2.42 | 7.85 | 83.56 | 99.62 |
2 | 2.85 | 15.24 | 74.24 | 95.97 |
3 | 2.73 | 8.98 | 80.13 | 97.37 |
4 | 2.63 | 9.57 | 80.64 | 96.34 |
5 | 5.36 | 17.37 | 80.64 | 76.95 |
6 | 2.64 | 8.34 | 84.31 | 98.01 |
7 | 4.46 | 12.17 | 83.53 | 83.75 |
8 | 7.81 | 19.24 | 79.96 | 63.34 |
Tab.2 Filter layer structure parameters and filtration efficiency of each mask
编号 | 纤维直径 x1/μm | 平均孔径 x2/μm | 孔隙率 x3/% | 过滤效 率y/% |
---|---|---|---|---|
1 | 2.42 | 7.85 | 83.56 | 99.62 |
2 | 2.85 | 15.24 | 74.24 | 95.97 |
3 | 2.73 | 8.98 | 80.13 | 97.37 |
4 | 2.63 | 9.57 | 80.64 | 96.34 |
5 | 5.36 | 17.37 | 80.64 | 76.95 |
6 | 2.64 | 8.34 | 84.31 | 98.01 |
7 | 4.46 | 12.17 | 83.53 | 83.75 |
8 | 7.81 | 19.24 | 79.96 | 63.34 |
编号 | 纤维直径 x1'/μm | 平均孔径 x2'/μm | 孔隙率 x3'/% | 过滤效 率y'/% |
---|---|---|---|---|
1 | 0.00 | 0.00 | 0.57 | 1.00 |
2 | 0.07 | 0.45 | 0.00 | 0.90 |
3 | 0.05 | 0.07 | 0.36 | 0.94 |
4 | 0.03 | 0.11 | 0.39 | 0.91 |
5 | 0.47 | 0.58 | 0.39 | 0.38 |
6 | 0.04 | 0.03 | 0.61 | 0.96 |
7 | 0.33 | 0.26 | 0.57 | 0.56 |
8 | 0.86 | 0.69 | 0.35 | 0.00 |
Tab.3 Each item of data after standardized processing
编号 | 纤维直径 x1'/μm | 平均孔径 x2'/μm | 孔隙率 x3'/% | 过滤效 率y'/% |
---|---|---|---|---|
1 | 0.00 | 0.00 | 0.57 | 1.00 |
2 | 0.07 | 0.45 | 0.00 | 0.90 |
3 | 0.05 | 0.07 | 0.36 | 0.94 |
4 | 0.03 | 0.11 | 0.39 | 0.91 |
5 | 0.47 | 0.58 | 0.39 | 0.38 |
6 | 0.04 | 0.03 | 0.61 | 0.96 |
7 | 0.33 | 0.26 | 0.57 | 0.56 |
8 | 0.86 | 0.69 | 0.35 | 0.00 |
[1] | 贾琳, 王西贤, 曹琪龙, 等. PAN/SiO_2复合纳米纤维滤膜的制备及性能分析[J]. 丝绸, 2020, 57(10):17-23. |
JIA Lin, WANG Xixian, CAO Qilong, et al. Preparation and property analysis of PAN/SiO2 composite nanofiber filter membrane[J]. Silk, 2020, 57 (10): 17-23 | |
[2] |
LIU J, ZHANG X, ZHANG H, et al. Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity[J]. RSC Advances, 2017, 7(69): 43879-43887.
DOI URL |
[3] |
THOMAS A W, WILLIAM A M, RICHARD A G. If the mask fits: Facial dimensions and mask performance[J]. International Journal of Industrial Ergonomics, 2019, 72:308-310
DOI URL |
[4] | 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3):168-174. |
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41 (3): 168-174 | |
[5] |
JOHNSON A T. Respirator masks protect health but impact performance: A review[J]. Journal of Biological Engineering, 2016, 10(1): 1-12.
DOI URL |
[6] | 全琼瑛, 应伟伟, 祝成炎. 熔喷非织造过滤材料直径对医用口罩过滤性能的影响[J]. 上海纺织科技, 2015, 43(11):16-18. |
QUAN Qiongying, YING Weiwei, ZHU Chengyan. The effect of fiber diameter of melt-blown nonwovens on filtration performance of medical masks[J]. Shanghai textile technology, 2015, 43 (11): 16-18 | |
[7] | 王璐, 于斌, 祝成炎, 等. 异纤度对水刺非织造材料孔隙结构及过滤性能的影响[J]. 浙江理工大学学报, 2010, 27(4):524-528. |
WANG Lu, YU Bin, ZHU Chengyan, et al. Effect of pore structure of differential linear density on filtration performance of spunlaced nonwovens[J]. Journal of Zhejiang Sci-Tech University, 2010, 27(4): 524-528 | |
[8] | 金关秀, 祝成炎. 孔隙形状对熔喷非织造布过滤品质的影响[J]. 上海纺织科技, 2018, 46(11):15-18. |
JIN Guanxiu, ZHU Chengyan. Effect of shape on the filter quality of melt-blown nonwoven[J]. Shanghai textile technology, 2018, 46(11):15-18. | |
[9] | 武松梅, 袁传刚. 非织造材料孔径与过滤性能关系的研究[J]. 产业用纺织品, 2010, 28(1):12-14. |
WU Songmei, YUAN chuangang. Study on relation between pore size of nonwovens and filtration characteristic[J]. Industrial Textiles, 2010, 28(1): 12-14 | |
[10] | 倪冰选, 张鹏. 非织造布孔径分布及过滤效率研究[J]. 产业用纺织品, 2012, 30(3):25-28. |
NI Bingxuan, ZHANG Peng. Study on pore size distribution and filtration efficiency of nonwovens[J]. Industrial Textiles, 2012, 30(3): 25-28 | |
[11] | 陈美玉, 周莹莹, 王红红, 等. 市场口罩的过滤特征与舒适性分析[J]. 纺织高校基础科学学报, 2018, 31(3):281-288. |
CHEN Meiyu, ZHOU Yingying, WANG Honghong, et al. Filtering characteristics and comfort performance of the masks in the market[J]. Journal of basic science of Textile University, 2018, 31(3): 281-288 | |
[12] | 冯强强. 新型舒适性医用口罩材料的研究与开发[D]. 西安: 西安工程大学, 2012. |
FENG Qiangqiang. Research and Development of Ate-model and Comfortable Materials for Medical Mask[D]. Xi'an: Xian University of Engineering, 2012 | |
[13] | 田伟, 雷新, 从明芳, 等. 纺粘非织造布制备工艺与性能的关系[J]. 纺织学报, 2015, 36(11):68-71. |
TIAN Wei, LEI Xin, CONG Mingfang, et al. Relationship between manufacture process and performance for spunbond nonwoven[J]. Journal of Textile Research, 2015, 36(11):68-71. | |
[14] | 刘林玉, 陈诚毅, 王珍玉, 等. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(5):119-123. |
LIU Linyu, CHEN Chengyi, WANG Zhenyu, et al. Thermal-moisture comfort of multilayered fabric systemsused as firefighting clothing[J]. Journal of Textile Research, 2019, 40(5):119-123. | |
[15] | 全琼瑛, 应伟伟, 祝成炎. 非织造医用防护口罩过滤材料结构与过滤效率关系的研究[J]. 上海纺织科技, 2015(7):1-2,29. |
QUAN Qiongying, YING Weiwei, ZHU Chengyan. Study on relation between structure and filtration efficiency of nonwoven medical protective masks[J]. Shanghai Textile Technology, 2015, 43(7): 1-2,29 | |
[16] | 陈凤翔, 翟丽莎, 刘可帅, 等. 防护口罩研究进展及其发展趋势[J]. 西安工程大学学报, 2020, 34(2):1-12. |
CHEN Fengxiang, ZHAI Lisha, LIU Keshuai, et al. Research progress and its developing trend of protective masks[J]. Journal of Xi'an Polytechnic University, 2020, 34(2):1-12. | |
[17] | 刘让同, 李亮, 焦云, 等. 织物结构与性能[M]. 武汉: 武汉大学出版社, 2012. |
LIU Rangtong, LI Liang, JIAO Yun, et al. Fabric Structure and Properties[M]. Wuhan: Wuhan University Press, 2012. |
[1] | CHEN Xue, YU Lijing, ZHANG Zhaohua. Review of personal cold and heat regulating clothing [J]. Advanced Textile Technology, 2024, 32(9): 28-37. |
[2] | ZHAI Ruotong, SHI Tingting, SONG Haibo, LU Yehu, YIN Lanjun. tudy on the sleep comfort of quilts in a winter heating room environment [J]. Advanced Textile Technology, 2024, 32(9): 83-90. |
[3] | ZHANG Luyang, SONG Haibo, MENG Jing, SHI Tingting, LU Yehu. Dynamic thermal and moisture comfort of the bedding system in different conditions [J]. Advanced Textile Technology, 2024, 32(5): 97-104. |
[4] | LIU Xiaohan, WANG Yuxuan, XIE Wen, ZHANG Hongxia. Performance of antibacterial clothing fabric with the composite functions of thermal-moisture comfort [J]. Advanced Textile Technology, 2024, 32(4): 52-59. |
[5] | TIAN Yuan, DU Zhaoqun, ZHENG Dongming, ZOU Haochen. Development of fabric style and thermal-moisture comprehensive evaluation system [J]. Advanced Textile Technology, 2024, 32(4): 68-75. |
[6] | REN Jiayuan, JIN Jian, ZHENG Jingjing. Thermal-wet comfort evaluation of fire physical training clothing based on EEG technology#br# [J]. Advanced Textile Technology, 2024, 32(1): 108-118. |
[7] | ZHAI Shunaa, LOU Lina, b, c, WANG Qicaid, YUAN Jiea, b. Research progress of functional magnetic resonance imaging in brain perception induced by fabric stimulation [J]. Advanced Textile Technology, 2023, 31(3): 274-284. |
[8] | XUE Xiaoyu, HE Jiazhen, WANG Min. Application progress of 3D virtual fitting technology in fashion design and performance evaluation [J]. Advanced Textile Technology, 2023, 31(2): 12-. |
[9] | HU Diefei, WANG Yan, YAO Juming, XIA Xinxing, ZHANG Guoqing, DANA Kremenakova, JIRI Militky, JAKUB Wiener, ZHU Guocheng. Properties of paper yarn recycled polyester composite yarn and its knitted fabric [J]. Advanced Textile Technology, 2023, 31(2): 152-. |
[10] | ZHAI Shuna, YUAN Jie, LOU Lin. Research progress of ERPs technology in fabric tactile comfort evaluation [J]. Advanced Textile Technology, 2023, 31(1): 73-81. |
[11] | DANG Tianhua, ZHAO Mengmeng, QIAN Jing. Development and evaluation of ventilation clothing based on micro fan array [J]. Advanced Textile Technology, 2022, 30(4): 214-221. |
[12] | ZHOU Qianwen, HE Jiazhen, LU Zijing, LU Yehu. Development and performance evaluation of multi-seasonal sanitation suits [J]. Advanced Textile Technology, 2022, 30(1): 185-193. |
[13] | TIAN Jinyu, TU Ye. Optimization method of cycling jacket template based on virtual pressure in 3 riding postures [J]. Advanced Textile Technology, 2022, 30(1): 212-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||