Advanced Textile Technology ›› 2024, Vol. 32 ›› Issue (11): 123-133.
Previous Articles Next Articles
Online:
2024-11-10
Published:
2024-11-12
CLC Number:
ZHANG Dianbo, BAI Jinwang, ZHONG Weihua, LIANG Chen, ZHANG Junxian. Research progress on copolymerization modification of poly (p-phenylene benzobisoxazole) fibers[J]. Advanced Textile Technology, 2024, 32(11): 123-133.
张殿波, 白金旺, 钟蔚华, 梁晨, 张君贤. 聚对苯撑苯并二噁唑纤维共聚改性研究进展[J]. 现代纺织技术, 2024, 32(11): 123-133.
[1] ZHANG J T, JIN N R, GAO J R. Superior comprehensive performance of a rigid-rod poly(hydroxy-p-phenylenebenzobisoxazole) fiber[J]. Polymer, 2018,149: 325-333. [2] 刘姝瑞, 谭艳君, 霍倩, 等. PBO纤维力学强度表征其耐酸性的研究[J]. 现代纺织技术, 2017, 25(4):15-19. LIU Shurui, TAN Yanjun, HUO Qian, et al. Research on acid resistance property of PBO fiber characterized by its mechanical strength[J]. Advanced Textile Technology, 2017, 25(4): 15-19. [3] 白金旺, 张殿波, 钟蔚华, 等. 耐紫外老化PBO纤维改性技术研究进展[J]. 化工新型材料, 2024, 52(3): 22-27. BAI Jinwang, ZHANG Dianbo, ZHONG Weihua, et al. Advances in UV-resistant PBO fiber modification technologies[J]. New Chemical Materials, 2024, 52(3): 22-27. [4] LI N, HU Z, HUANG Y. Preparation and characterization of nanocomposites of poly(p-phenylene benzobisoxazole) with aminofunctionalized graphene[J]. Polymer Composites, 2018, 39(8): 2969-2976. [5] SO Y H, Rigid-rod polymers with enhanced lateral interactions[J]. Progress in Polymer Science, 2000, 25(1): 137-157. [6] CHEN L, LI Z, WU G, et al. In situ growth of TiO2 nanoparticles onto PBO fibers via a mussel‐inspired strategy for enhancing interfacial properties and ultraviolet resistance[J]. Polymer Composites, 2021, 42(10): 5065-5074. [7] CHEN, L, HU Z, LIU L, et al. A facile method to prepare multifunctional PBO fibers: Simultaneously enhanced interfacial properties and UV resistance[J]. RSC Advances, 2013, 3(46): 24664-24670. [8] SHAO Q, LU F, YU L, et al. Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: Multifunctional interface with self-healing and ultraviolet-resistance performance[J]. Journal of Colloid and Interface Science, 2021,587: 661-671. [9] 李芝华, 李慧, 刘夏清, 等. PBO纤维性能及表面改性的研究进展[J]. 包装工程, 2016, 37(19): 146-151. LI Zhihua, LI Hui, LIU Xiaqing, et al. Research progress of PBO fiber properties and surface modification[J]. Packaging Engineering, 2016, 37(19): 146-151. [10] LIU, Z, SONG, B, WANG, T, et al. Significant improved interfacial properties of PBO fibers composites by in situ constructing rigid dendritic polymers on fiber surface[J]. Applied Surface Science, 2020,512: 145719. [11] GOUTIANOS S, PEIJS T. On the low reinforcing efficiency of carbon nanotubes in high-performance polymer fibres[J]. Nanocomposites, 2021, 7(1): 53-69. [12] WOLFE J F, ARNOLD F E. Rigid-rod polymers. 1. Synthesis and thermal properties of Para-aromatic polymers with 2,6-benzobisoxazole units in the main chain[J]. Macromolecules, 1981, 14(4): 909-915. [13] 袁会齐, 张丽. 4,6-二氨基间苯二酚的研究进展[J]. 生物化工, 2019, 5(1): 136-138. YUAN Qihui, ZHANG Li. Research progress of 4,6-diamino-resorcinol[J]. Biological Chemical Engineering, 2019, 5(1): 136-138. [14] WOLFE J F, SYBERT P D, SYBERT J R. Liquid crystalline polymer compositions, process, and products: US4533693[P]. 1985-08-06. [15] GAO Z C, WANG J Q, FENG L F, et al. Flow-accelerated polycondensation reaction to prepare rigid rodlike poly(p-phenylene-cis-benzobisoxazole)[J]. Chemical Engineering and Processing-Process Intensification, 2022(176): 108972. [16] 郭玲, 赵亮, 胡娟, 等. 国产PBO纤维研究现状及发展趋势[J]. 高科技纤维与应用, 2014, 39(2): 11-15. GUO Ling, ZHAO Liang, HU Juan, et al. Research status development trend of domestic PBO fiber[J]. Hi-Tech Fiber and Application, 2014, 39(2): 11-15. [17] IMAI Y, ITOYA K, KAKIMOTO M A. Synthesis of aromatic polybenzoxazoles by silylation method and their thermal and mechanical properties[J]. Macromolecular Chemistry and Physics, 2000, 201(17): 2251-2256. [18] KITAGAWA T, MURASE H, YABUKI K. Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber[J]. Journal of Polymer Science Part B Polymer Physics, 1998, 36(1): 39-48. [19] KITAGAWA T. Novel fine structures in poly-p-phenylenebenzobisoxazole fibers induced by water vapor, hot water, and non-aqueous coagulation I molecular orientation along the fiber axis and fine structures[J].Journal of Macromolecular Science Part B, 2015, 54(11): 1323-1340. [20] TIKHONOV I V, TOKAREV A V, SHORIN S V, et al. Russian aramid fibres: Past-present-future[J]. Fibre Chemistry, 2013, 45(1): 1-8. [21] 王阳, 赵蕾, 姜波, 等. 一种基于第三单体的高性能有机纤维的制备与表征[J]. 化学与黏合, 2017, 39(1): 7-10. WANG Yang, ZHAO Lei, JIANG Bo, et al. Preparation and characterization of a high-performance organic fiber based on the third comonomer[J]. Chemistry and Adhesion, 2017, 39(1): 7-10. [22] 田雪, 周承俊, 陈晓军, 等. PBO-b-ABPBO多嵌段共聚物的制备及其性能[J]. 功能高分子学报, 2008, 21(2): 147-151. TIAN Xue, ZHOU Chengjun, CHEN Xiaojun, et al. Preparation and properties of PBO-b-ABPBO block copolymer[J]. Journal of Functional Polymers, 2008, 21(2): 147-151. [23] HAN G C, SATISH K. Making strong fibers[J]. Science, 2008, 319(5865): 908-909. [24] WANG M, ZHANG S, DONG J, et al. A facile route to synthesize nanographene reinforced PBO composites fiber via in situ polymerization[J]. Polymers, 2016, 8(7): 251-261. [25] WANG, M, WANG C, SONG Y, et al. One-pot in situ polymerization of graphene oxide nanosheets and poly(p-phenylenebenzobisoxazole) with enhanced mechanical and thermal properties[J]. Composites Science & Technology, 2017, 141: 16-23. [26] HU Z, SHAO Q, MOLONEY M G, et al. Nondestructive functionalization of graphene by surface-initiated atom transfer radical polymerization: An ideal nanofiller for poly(p-phenylene benzobisoxazole) fibers[J]. Macromolecules, 2017, 50(4): 1422-1429. [27] LI X, HUANG L, LIU H, et al. Preparation of multiwall carbon nanotubes/poly(p-phenylene benzobisoxazole) nanocomposites and analysis of their physical properties[J]. Journal of Applied Polymer Science, 2006, 102(3): 2500-2508. [28] ZHOU C, WANG S, ZHANG Y, et al. In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes[J]. Polymer, 2008, 49(10): 2520-2530. [29] LI J, CHEN X, LI X, et al. Synthesis, structure and properties of carbon nanotube/poly(p‐phenylene benzobisoxazole) composite fibres[J]. Polymer International, 2010, 55(4): 456-465. [30] CHARLES Y C, SANTHOSH U. The role of the fibrillar structures in the compressive behavior of rigid‐rod polymeric fibers[J]. Polymer Engineering & Science, 1993, 33(14): 907. [31] DANG T D, WANG C S, CLICK W E, et al. Polybenzobisthiazoles with crosslinking sites for improved fibre axial compressive strength[J]. Polymer, 1997, 38(3): 621-629. [32] SO Y H, BELL B, HEESCHEN J P, et al. Poly(p-Phenylenebenzobisoxazole) fiber with polyphenylene sulfide pendent groups[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33: 159-164. [33] SO Y H, SEN A, KIM P, ET al. Molecular composite fibers from rigid rod polymers and thermoset resin matrixes[J]. Journal of Polymer Science A Polymer Chemistry, 1995, 33(17): 2893-2899. [34] HARRIS W J, LYSENKO Z. Polybenzoxazoles having pendant methyl groups: US5151490[P]. 1992-09-29. [35] 毛婷婷, 陈汉庚, 徐继伟, 等. 2,6-二羟基-3,5-二硝基甲苯的合成新工艺[J]. 精细化工, 2015, 32(12): 1431-1436. MAO Tingting, CHEN Hangeng, XU Jiwei, et al. Novel synthesis of 2,6-dihydroxy-3,5-dinitrotoluene[J]. Fine Chemicals, 2015, 32(12): 1431-1436. [36] DEAN D R, HUSBAND D M, DOTRONG M, et al. Multidimensional benzobisoxazole rigid-rod polymers. II. Processing, characterization, and morphology[J]. Journal of Polymer Science Part A Polymer Chemistry, 1997, 35(16): 3457-3466. [37] JIANG J M, ZHU H J, LI G, et al. Poly(p-phenylene benzoxazole) fiber chemically modified by the incorporation of sulfonate groups[J]. Journal of Applied Polymer Science, 2008, 109(5): 3133-3139. [38] 金俊弘, 罗开清, 江建明, 等. 离子基团对PBO纤维的表面性能及其界面粘结性能的影响[J]. 复合材料学报, 2006, 23(6):69-74. JIN Junhong, LUO Kaiqing, JIANG Jianming, et al. Effect of ionic groups on the surface and the interfacial adhesion properties of poly(p-phenylene benzoxazole) (PBO) fiber[J]. Acta Materiae Compositae Sinica, 2006, 23(6):69-74. [39] ZHANG T, HU D, JIN J, et al. Improvement of surface wettability and interfacial adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J]. European Polymer Journal, 2009, 45(1): 302-307. [40] YALVAC S, JAKUBOWSKI J J, SO Y H, et al., Improved interfacial adhesion via chemical coupling of cis-polybenzobisoxazole fibre-polymer systems[J]. Polymer, 1996, 37(20): 4657-4659. [41] WALSH P, HU X, CUNNIFF P, et al. Environmental effects on poly-p-phenylenebenzobisoxazole fibers. I. Mechanisms of degradation.[J] Journal of Applied Polymer Science, 2010, 102(4): 3517-3525. [42] SO Y H, MARTIN S J, BELL B, et al. Importance of π-stacking in photoreactivity of aryl benzobisoxazole and aryl benzobisthiazole compounds[J]. Macromolecules, 2003, 36(13): 4699-4708. [43] SAID M A, DINGWALL B, GUPTA A, et al. Investigation of ultra violet (UV) resistance for high strength fibers[J]. Advances in Space Research, 2006, 37(11): 2052-2058. [44] 宋波, 傅倩, 刘小云, 等. PBO纤维的紫外光老化及防老化研究[J]. 固体火箭技术, 2011, 34(3): 378-383. SONG Bo, FU Qian, LIU Xiaoyun, et al. Study on the photolysis and stabilization of PBO fiber[J]. Journal of Solid Rocket Technology, 2011, 34(3): 378-383. [45] 张利, 蔡小川, 许汉, 等. 基于PBO共聚物改性纤维的制备及其耐紫外光老化性能的研究[J]. 山东化工, 2015, 44(19): 10-14. ZHANG Li, CAI Xiaochuan, XU Han, et al. Preparation of modified fiber based on PBO copolymer and study of its anti-ultraviolet ageing performance[J]. Shandong Chemical Industry, 2015, 44(19): 10-14. [46] ZHANG T, JIN J, YANG S, et al. UV accelerated aging and aging resistance of dihydroxy poly(p-phenylene benzobisoxazole) fibers[J]. Polymers for Advanced Technologies, 2011, 22(5): 743-747. [47] JANG Y W, MIN B G, YOON K H. Enhancement in compressive strength and UV ageing-resistance of poly(p-phenylene benzobisoxazole) nanocomposite fiber containing modified polyhedral oligomeric silsesquioxane[J]. Fibers and Polymers, 2017, 18(3): 575-581. [48] LI Z F, LU F, LU S, et al. Fabrication of uvioresistant poly(p-phenylene benzobisoxazole) fibers based on hydrogen bond[J]. Journal of Applied Polymer Science, 2020,137(9): 48432-48443. [49] WANG Q W, YOON K H, MIN B G. Chemical and physical modification of poly(p-phenylene benzobisoxazole) polymers for improving properties of the PBO fibers. I. Ultraviolet-ageing resistance of PBO fibers with naphthalene moiety in polymer chain[J]. Fibers and Polymers, 2015, 16(1): 1-7. [50] LI J, WANG W, ZHAO L, et al. In situ synthesis of PBO-α-(amino phthalocyanine copper) composite fiber with excellent UV-resistance and tensile strength[J]. Journal of Applied Polymer Science, 2018, 135(48): 46870-46880. |
[1] | PEI Longcang, ZHANG Le, CHEN Shichang. Structural and property evolution of polyester industrial yarns during multistage drawing and heat-setting processes [J]. Advanced Textile Technology, 2024, 32(8): 56-66. |
[2] | FAN Yangrui, QIAN Jianhua, YU Deyou, GUO Yuhai, DAI Hongxiang, LI Chengcai. Melt spinning of polyvinyl chloride (PVC) fibers and their structure and properties [J]. Advanced Textile Technology, 2024, 32(7): 42-47. |
[3] | XIAO Keying, CUI Siyi, LIN Shaowu, WANG Xueqin, . Simulation analysis of the influence of mechanical properties of fillers on cushion comfort [J]. Advanced Textile Technology, 2024, 32(4): 21-28. |
[4] | WANG Dengfeng, LUO Xiaolei, CHEN Wenhao, LIU Lin. Composition control and performance of silk/wool/cotton colored spun yarn [J]. Advanced Textile Technology, 2024, 32(2): 50-56. |
[5] | SU Nini, WU Ying, TIAN Wei, ZHU Chengyan. Effect of degumming treatment on properties of one-way silk/PCL composites [J]. Advanced Textile Technology, 2024, 32(11): 81-88. |
[6] | ZHENG Shuo, WANG Yongjun, JIN Yilin, WANG Gangqiang, DAI Junming, LÜ Wangyang. Creep behavior of ultrahigh molecular weight polyethylene with ultrahigh strength during multistage thermal stretching [J]. Advanced Textile Technology, 2024, 32(10): 85-93. |
[7] | MING Lin , FENG Xuhuang, SHAO Lingda, DING Hao, SUN Zeyu, MA Leilei, TIAN We, ZHU Chengyan, . Effect of sodium hydroxide treatment on the interface and mechanical properties of GF/VER composites [J]. Advanced Textile Technology, 2023, 31(6): 100-109. |
[8] | LIU Shu, HOU Teng, ZHOU Lele, ZHOU Jing, LI Xianglong, YANG Bin . Structure and properties of forced reeling silks of different varieties of Bombyx mori silkworms [J]. Advanced Textile Technology, 2023, 31(5): 125-131. |
[9] | JI Hong, SONG Minggen, ZHANG Yue, CHEN Kang, ZHANG Yumei. Spinning research of copolymerized flame-retardant polyester industrial yarns [J]. Advanced Textile Technology, 2023, 31(4): 56-62. |
[10] | SHI Qiang, SHI Jiaoxue, ZHENG Xiong, ZHANG Xuzhen. Effects of activating oiling agents and oiling technology on the properties of polyester high strength fibers [J]. Advanced Textile Technology, 2023, 31(3): 155-162. |
[11] | TAO Lizhen, ZHOU Suolin, LIAO Lanlan. Research on spinning and property of composite electro conductive yarns comprising metal filaments [J]. Advanced Textile Technology, 2023, 31(2): 130-. |
[12] | NIE Lei, LI Jiawei, YAN Xiaofei, QI Dongming, YANG Xiaoming, LI Yaobang, ZHU Chenkai. Preparation and properties of fully-degradable glass fiber reinforced composites [J]. Advanced Textile Technology, 2022, 30(5): 104-111. |
[13] | SONG Huifen, SONG Liyan, PAN Tianhao, CHI Changlong, SHI Suyu, ZHANG Xuefeng. Effect of annealing on the structure and mechanical properties of polyurethane fiber [J]. Advanced Textile Technology, 2022, 30(2): 93-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||